# Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications



### **ON Semiconductor®**

http://onsemi.com

# **APPLICATION NOTE**

### Introduction

This update includes additional information on 220 V ac lighting circuits with the addition of ON Semiconductors 120 V breakdown family of CCRs.

LEDs for AC and DC lighting pose a challenge to lighting designers. Technology for High Brightness (HB) LEDs is rapidly advancing. There are several existing solutions to drive these devices: Switching power devices (buck, boost, and buck-boost), linear regulators and resistor bias circuits. Each has its merits and drawbacks. One thing is common to all. LEDs need to be driven by a constant current source for maximum efficiency (lumens per watt), color and lifetime.

Switching regulator topology can be costly, cause EMI, and require additional circuit elements. Linear regulator circuits are less costly; but, may require additional components and are less efficient. Resistor bias is the least expensive method to set a current for a specific voltage. The drawback is that the current changes with a change in input voltage.

ON Semiconductor has developed a family of cost effective Constant Current Regulators (CCR) that will simplify circuit design while meeting the consensus requirement to keep the LED under a constant current condition.

The CCR can be represented as a variable resistor. As the voltage increases across the device, the internal resistance of the CCR increases to maintain a current close to the specification ( $I_{reg}$ ). The CCR also has a negative temperature coefficient, thus as power is dissipated by the CCR (increased temperature), its internal resistance increases causing a reduction in current. The CCR has a higher regulating current when pulsed compared to that at a steady state DC current because the die has not reached thermal stability.

The rectified AC waveform is similar to a pulsed signal. The regulating current will change as the power dissipation changes.

The purpose of this paper is to explore the utilization in AC lighting applications with 110 V, and 220 V AC rms input for CCR devices Figure 1.

An AC output from a Full Wave Bridge rectifier produces a varying dc voltage which has a value with time of: Vi = Vpk sin( $2\pi$ ft). The value for  $2\pi$ f is 377 for a 60 Hz waveform and 314 for a 50 Hz waveform.

As the voltage is rising across the series configuration of CCR device and LED string it will reach the forward voltage of the LED string (Vf x Number of LEDs). At this point, the LED string voltage will begin to remain constant. About 1.8 V beyond this LED turn on point, the CCR will turn on to maintain a constant current through the LEDs. The voltage across the CCR will be the difference between the total LED Vf and the Vi up to Vpk. This process reverses on the falling side of the rectified voltage. The effect is to have a PWM (Pulse Width Modulation) of the LEDs at 120 Hz for a 60 Hz waveform or 100 Hz for a 50 Hz waveform. Using a 30 mA steady state CCR in a 120 V AC application results in 22 mA rms due to pulsed operation from full wave bridge rectification. This paper describes applications from new to retrofit circuit designs. The operating range of the CCR in AC circuits is from 1.8 V to 120 V. See appendix B for terms used in AC analysis.

The LED on time will depend on the forward voltage drop of the LED string. In the circuits referenced in this application, the CCR on time is about half the peak voltage on time. Thus the LEDs are on for about 50% of the time. The rms current through the LEDs is therefore about 50% of the regulating current.



Figure 1. Basic AC Application



Figure 2. Demonstration PCB used for 110 V & 220 V AC rms analysis

### **DESIGN EXAMPLE 1: New Design with a CCR**

This design selects the number of series LEDs. Design parameters: 110 VAC rms, +/- 10%, HB LEDs (V<sub>F</sub> of 3.3 V at 20 mA). Analysis for Vin = +10% (max) To calculate the number of LEDs for Vin Maximum = (110 V rms + 10%) = 120 V rms Rectified Vpeak = 120 V rms x 1.414 = 170 V V<sub>F</sub> of LED string = 170 V (peak Vin) – 45 V (Vak max) = 125 V (V<sub>F</sub> led string) # of LEDs = 125 V / 3.3 V = 38 LEDs Analysis for Vin = -10% (min)

Testing for minimum Vin: (110 Vrms - 10%) = 100 VrmsRectified Vpeak = 100 Vrms x 1.414 = 141 V (peak Vin) CCR Vak is: 141 V (peak Vin) – 125 V (V<sub>F</sub> LED string) = 16 V

The Vak range will vary with the number of LEDs in the string. Adding 3 additional LEDs will set the Vak range from 6 V to 35 V. The additional HB LEDs provides greater luminosity and reduces CCR thermals.



Figure 3. Direct AC Line LED Circuit with CCR

The AC rms voltage is full wave rectified into pulsating DC at a frequency of 120 Hz. The CCR turns on when the voltage exceeds the  $V_F$  for the LEDs and the bridge rectifier, controlling the current and isolating the LEDs from the peak rectified voltage.

### Thermal Analysis of Design Example 1

(120 VAC, 38 LEDs)

The power dissipation of the CCR for Figure 3 is determined by:

(Vak rms) x ( $I_{REG} * Duty Cycle$ )

Vak rms = Vbridge rms - LED string  $V_{F rms}$ 

(120 Vbr rms-(38 x 3.3 V LED x 0.707 ) x (30 mA x 50%) = 31 V rms x 15 mA = 465 mW A SOT-223 with a 100 mm<sup>2</sup> 1 oz Cu heat spreader will operate up to  $85^{\circ}$ C.

The data sheet power dissipation tables show various combinations for other ambient temperatures.

The following oscilloscope traces (Figures 4, 5 and 6) are for a 110 V  $\pm$ 10% AC rms input with 38 LEDs in series. The regulated current is measured by using a 100  $\Omega$ , 1% sense resistor. The measurements show the rms voltage across the sense resistor with the rms current below the voltage measurement. The circuit is similar to Figure 3 using a single NSI45030AZT1G 30 mA CCR. The heatsink for the CCR on this test PCB is 500 mm<sup>2</sup>.

All waveforms were taken using differential voltage probes.



Figure 4. 100 V rms 1 x 30 mA CCR Analysis



Figure 5. 120 V rms, 1 x 30 mA CCR Analysis

CCRs can be operated in parallel to increase the regulated current supplied to the circuit. The waveforms of Figure 6 were taken with two 30 mA CCRs operated in parallel (Figure 3, SW 1 closed).

The LED intensity is increased when the supplied current is doubled. The LED  $V_F$  increases by less than 10% with a 100% increase in drive current.



Figure 6. 120 V rms, 2 x 30 mA CCR Analysis

| In summary | for | 110 | VAC o | peration: |
|------------|-----|-----|-------|-----------|
|------------|-----|-----|-------|-----------|

Table 1

| Vin AC<br>V rms | V rectified<br>V Peak | CCRs   | CCR Ireg<br>mA rms | V <sub>F</sub> LED String<br>VPeak | Vak CCR<br>VPeak |
|-----------------|-----------------------|--------|--------------------|------------------------------------|------------------|
| 100             | 141                   | 1 CCR  | 18                 | 123                                | 18               |
| 110             | 156                   | 1 CCR  | 21                 | 124                                | 32               |
| 120             | 170                   | 1 CCR  | 24                 | 124                                | 46               |
| 120             | 170                   | 2 CCRs | 43                 | 135                                | 34               |

### 220 V AC ANALYSIS

All that is required to use a CCR at 220 V AC rms are additional LEDs.

The following oscilloscope traces were taken on a similar circuit to Figure 3 operating at 220 V AC rms with 80 LEDs in series:



Figure 7. 220 V rms, 1 x 30 mA CCR Analysis

The following oscilloscope traces were taken on a similar circuit to Figure 3 operating at 220 V AC rms  $\pm$  10% with 68 LEDs in series using a 120 V, 50 mA CCR device:



Figure 8. 198 V rms, 1 x 50 mA CCR Analysis



Figure 9. 242 V rms, 1 x 50 mA CCR Analysis

### **Thermal Analysis of Design Example Figure 9**

(242 VAC, 68 LEDs)

The power dissipation of the CCR for Figure 3 is determined by: (Vak rms) x ( $I_{REG RMS}$ ) Vak rms = 57.7 V, Irms = 38 mA (from screenshot Figure 9)

 $57.7 \text{ V} \times 38 \text{ mA} = 2.19 \text{ W}$ 

This CCR is mounted on a 1000 mm<sup>2</sup>, 3 oz Cu, FR4 heat spreader will operate up to  $T_A$  of 50°C for a  $T_J$  of 175°C. Adding additional LEDs will reduce the power dissipation of the CCR and allow for a higher  $T_A$  operation. The data sheet power dissipation tables show various combinations for other ambient temperatures. All waveforms were taken using differential voltage probes.

# DESIGN EXAMPLE 2: Retrofitting using a CCR (Figure 10)

Design parameters: 110 V AC rms, +/- 10%, existing design using 24 LEDs ( $V_F$  of 3.3 V at 22 mA)

A series dropping resistor (Rs) will be chosen to keep the CCR within its operating limits.

Rectified Vpeak (maximum) = 120 V rms x 1.414 = 170 V V<sub>F</sub> of LED string = 24 x 3.3 V = 79.2 V

The voltage drop required is:  $Vpeak - (V_F leds pk + Vak CCR pk + VRsense pk)$ 

V drop of Rs = 170 V - (79.2 V + 45 V + 4) = 41.8 VCCR pk current is 34 mA; therefore, Rs = 41.8 V / .034 A =

1229  $\Omega$  (circuit tested with 1200  $\Omega$  RS) The power dissipation is V x I = 1.42 W pk or 1.0 W RMS.

Testing for minimum Vin: 110 V rms x 0.9 = 100 V rms using a 1200  $\Omega$  Rs

Rectified Vpeak = 100 Vrms x 1.414 = 141 V

CCR Vak is 141 V – (79.2 + 41.8 +4) = 16 V



Figure 10. Direct AC Line LED Circuit with CCR

| TDS5104B Oscilloscope Measurements | Max  | rms  |         | Мах  | rms  |
|------------------------------------|------|------|---------|------|------|
| Bridge output                      | 141  | 98   | VLEDs   | 80   | 64   |
| VRs+Vak+VRsense                    | 61   | 34   | VRsense | 3.6  | 2.1  |
| VRs+Vak                            | 57.4 | 31.9 | Vak     | 15.6 | 6.5  |
| VRs                                | 41.8 | 25.4 | VRs     | 41.8 | 25.4 |
| Bridge output                      | 155  | 107  | VLEDs   | 80.8 | 65   |
| VRs+Vak+VRsense                    | 74.2 | 42   | VRsense | 3.9  | 2.4  |
| VRs+Vak                            | 70.3 | 39.6 | Vak     | 26.3 | 11.6 |
| VRs                                | 44   | 28   | VRs     | 44   | 28   |
| Bridge output                      | 171  | 117  | VLEDs   | 81.7 | 65.6 |
| VRs+Vak+VRsense                    | 89.3 | 51.4 | VRsense | 3.9  | 2.8  |
| VRs+Vak                            | 85.4 | 48.6 | Vak     | 39   | 18   |
| VRs                                | 46.4 | 30.6 | VRs     | 46.4 | 30.6 |
|                                    |      |      |         |      |      |

### 24 LEDS, 1200 $\Omega$ Rs, 1 CCR, 100 $\Omega$ Rsense, 25°C

### Actual 24 LED, 1200 $\Omega$ series resistor circuit measurements

| Power Dissipation for 120V AC rms | Max   | rms    |
|-----------------------------------|-------|--------|
| Ireg A                            | 0.039 | 0.028  |
| P <sub>D</sub> Rs (W)             |       | 0.8568 |
| P <sub>D</sub> CCR (W)            |       | 0.504  |
| P <sub>D</sub> Rsense (W)         |       | 0.0784 |
| P <sub>D</sub> LEDs (W)           |       | 1.8368 |
| Total P <sub>D</sub> (W)          |       | 3.276  |

### Summary

The CCR can be represented as a variable resistor. As the voltage increases across the device the internal resistance of the CCR increases to maintain a current close to the specification ( $I_{reg}$ ). The CCR also has a negative temperature coefficient, thus as power is dissipated by the CCR (increased temperature) the internal resistance is increased causing a reduction in current. This prevents thermal runaway and protects the LEDs increasing their life and reliability. The CCR has a higher regulating current when pulsed compared to that at a steady state DC current because the die has not reached thermal stability.

The rectified AC waveform is similar to a pulsed signal, the regulating current will change as the power dissipation changes.

The LED on time will depend on the forward voltage of the LED string. In the circuits referenced in this application it is about half the peak voltage and thus the LEDs are on for about 50% of the time. The rms current through the LEDs is therefore about 50% of the regulating current.

See Appendix C for Application Notes, Design Notes and Technical Demonstration list.

### Appendix A:

SOD-123 devices are:

NSI45015WT1G, Steady State  $I_{REG} = 15 \text{ mA}\pm 20\%$ NSI45020T1G, Steady State  $I_{REG} = 20 \text{ mA}\pm 15\%$ NSI45025T1G, Steady State  $I_{REG} = 25 \text{ mA}\pm 15\%$ NSI45030T1G, Steady State  $I_{REG} = 30 \text{ mA}\pm 15\%$ NSI45020AT1G, Steady State  $I_{REG} = 20 \text{ mA}\pm 10\%$ NSI45025AT1G, Steady State  $I_{REG} = 25 \text{ mA}\pm 10\%$ NSI45030AT1G, Steady State  $I_{REG} = 30 \text{ mA}\pm 10\%$ NSI45030AT1G, Steady State  $I_{REG} = 30 \text{ mA}\pm 10\%$ NSI50010YT1G, Steady State  $I_{REG} = 10 \text{ mA}\pm 30\%$ 

### SOT-223 devices are:

NSI45025ZT1G, Steady State  $I_{REG} = 25 \text{ mA}\pm 15\%$ NSI45030ZT1G, Steady State  $I_{REG} = 30 \text{ mA}\pm 15\%$ NSI45025AZT1G, Steady State  $I_{REG} = 25 \text{ mA}\pm 10\%$ NSI45030AZT1G, Steady State  $I_{REG} = 30 \text{ mA}\pm 10$ NSI45020JZT1G, Adjustable  $I_{REG} = 20-40 \text{ mA}\pm 15\%$ NSI45035JZT1G, Adjustable  $I_{REG} = 35-70 \text{ mA}\pm 15\%$ 

### DPAK devices are:

NSI45060JDT4G, Adjustable I<sub>REG</sub> = 60–100 mA $\pm$ 15% NSI45090JDT4G, Adjustable I<sub>REG</sub> = 90–160 mA $\pm$ 15% NSI50350ADT4G, Steady State I<sub>REG</sub> = 350 mA $\pm$ 10%

SMC devices are: NSI50350AST1G, Steady State I<sub>REG</sub> = 350 mA±10%

SMB devices are:

NSIC2050BT3G, Vak max = 120V, Steady State  $I_{REG}$  = 50 mA $\pm$ 15% (Product Preview)

NSIC2030BT3G, Vak max = 120V, Steady State  $I_{REG}$  = 30 mA±15% (Product Preview)

NSIC2020BT3G, Vak max = 120V, Steady State  $I_{REG}$  = 20 mA±15% (Product Preview)

SC-74 devices are:

NSI45019JPT1G, Adjustable  $I_{REG} = 19-35 \text{ mA}\pm 15\%$ , PWM enhanced (Product Preview)

### Appendix B:

For AC (Alternating Current) analysis of series LED circuits, we will be using the following terms:

Vin = The input AC Line voltage applied expressed as rms or Stepped down with a transformer.

Vpeak = Highest Vin with a sinusoidal voltage (Vin x 1.414) Vbridge rms = Vpeak x 0.707

 $V_{F rms} = V_F LED \ge 0.707$ 

Rs = series dropping resistor if required.

Rsense = series resistor to measure current. V measured /

100  $\Omega$ , 1% resistor = current

Ireg = regulated circuit current

Ireg rms = Ireg peak x duty cycle (approximately 50%). Reference to Data Sheet:

The data sheet describes the devices and defines the following terms that will be used throughout this note:

Vak = Voltage applied between the Anode and Cathode of the device.

 $P_D$  = Device power dissipation, typically in W.

 $T_A$  = Ambient Temperature in °C

 $T_J$  = Device Junction Temperature in °C

### Appendix C:

AND8349/D Automotive Applications: The Use of Discrete Constant Current Regulators (CCR) For CHMSL Lighting AND8492/D Capacitive Drop Drive Topology with Constant Current Regulator to Drive LEDs

AND8220/D How To Use Thermal Data Found in Data Sheets

**AND9008/D** Thermal Considerations for Discrete Constant Current Regulators in DPAK, SMC and SMB Packages for Driving LEDs

**AND8391/D** Thermal Considerations for the ON Semiconductor Family of Discrete Constant Regulators (CCR) for Driving LEDs in Automotive Applications

**DN05013/D** NSI45090JD: ENERGY STAR<sup>®</sup> Compliant LED Driver Retrofit in T5 Tube Using 160 mA Constant Current Regulator

DN05021/D High Efficiency - Low Cost LED Dimming

**DN05022/D** ENERGY STAR<sup>®</sup> Compliant - Low Cost LED Dimming

TND402/D Constant Current Regulator Driver for T8 Fluorescent Light

**TND403/D** Constant Current Regulator Solutions for Driving LEDs

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use to all applicable to pright as not for sense if and personal injury or death agsociated with such unintended or unauthorized use coyer if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable coyright laws and is not for resale in any manner.

### PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative