

CY7C1041GN

4-Mbit (256K words × 16 bit) Static RAM

Features

- High speed
 □ t_{AA} = 10 ns / 15 ns
- Low active and standby currents
 Active current: I_{CC} = 38-mA typical
 Standby current: I_{SB2} = 6-mA typical
- Operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- 1.0-V data retention
- TTL-compatible inputs and outputs
- Pb-free 44-pin SOJ, 44-pin TSOP II, and 48-ball VFBGA packages

Functional Description

CY7C1041GN is high-performance CMOS fast static RAM Organized as 256K words by 16-bits.

Data writes are performed by asserting the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW, while providing the data on I/O₀ through I/O₁₅ and address on A₀ through A₁₇ pins. The Byte High Enable (\overline{BHE}) and Byte Low Enable (\overline{BLE}) inputs control write operations to the upper and lower bytes of the specified memory location. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

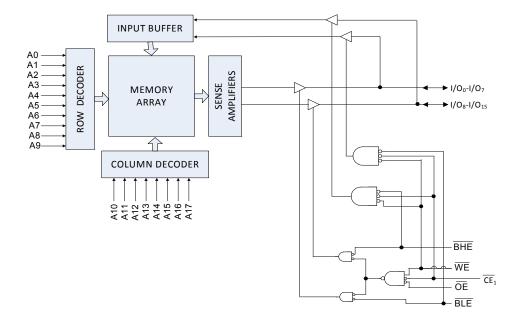
Data reads are performed by asserting the Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) inputs LOW and providing the required address on the address lines. Read data is accessible on the I/O lines (I/O₀ through I/O₁₅). Byte accesses can be performed by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state during the following events:

- The device is deselected (CE HIGH)
- The control signals (OE, BLE, BHE) are de-asserted

The logic block diagram is on page 2.

Product Portfolio


	Range	V _{CC} Range (V)	Speed	Power Dissipation				
Product			(ns)	Operating I _{CC} , (mA)		Standby, I _{SB2} (mA)		
Froduct			10/15	f = 1	max Standby,		, 'SB2 (11/A)	
			10/10	Тур [1]	Max	Тур [1]	Max	
CY7C1041GN18	Industrial	1.65 V–2.2 V	15	-	40	6	8	
CY7C1041GN30		2.2 V–3.6 V	10	38	45			
CY7C1041GN		4.5 V–5.5 V	10	38	45			

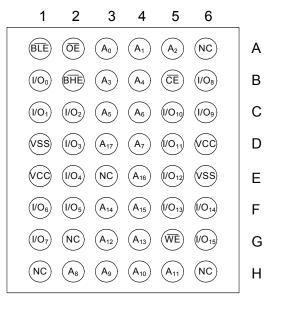
Notes

1. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

Logic Block Diagram – CY7C1041GN

CY7C1041GN

Contents


Pin Configurations	4
Maximum Ratings	5
Operating Range	5
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	6
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Data Retention Waveform	7
AC Switching Characteristics	8
Switching Waveforms	9
Truth Table	
Ordering Information	
Ordering Code Definitions	

Package Diagrams	14
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC®Solutions	18
Cypress Developer Community	18
Technical Support	

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1.0 mm) pinout, Package/Grade ID: BVXI $^{[2,\;3]}$

1 2 3 4 5 6 (BLE) (OE) (A_1) (A_2) (NC) А (A₀ (I/O₈) (BHE) (A_3) (A_4) (CE) (1/00) В (I/O₉) (I/O10) (A_5) (A_6) (I/O_1) (I/O_2) С (vss) (I/O11) (A_7) (I/O_3) (vcc) D (A_{17}) (vcc) (I/O₁₂) (NC) (I/O_4) (vss) (A_{16}) Е (I/O13) (I/O_5) (I/O_6) (I/O₁₄) (A_{14}) (A_{15}) F (NC) (\overline{WE}) (1/07) (I/O₁₅) (A₁₃) (A_{12}) G

(NC)

A₈

A₉

(A₁₀)

(A₁₁)

(NC)

Н

Figure 2. 48-ball VFBGA (6 × 8 × 1.0 mm) pinout, Package/Grade ID: BVJXI $^{[2]}$

A0 =	• 1	\bigcirc	44		A17
A1	2		43		A16
A2	3		42		A15
A3 =	4		41		/OE
A4	5		40		/BHE
/CE=	6		39		/BLE
I/O0 =	7		38		I/O15
I/O1 =	8		37		I/O14
I/O2	9	44- pin TSOP	1 ³⁶		I/O13
I/O3 🗖	10		35		I/O12
VCC=	11		34		VSS
VSS■	12		33		VCC
I/O4 🗖	13		32		I/011
I/O5 🗖	14		31		I/O10
I/O6 🗖	15		30		I/O9
I/07 🗖	16		29		I/O8
/WE	17		28		NC
A5 🗖	18		27		A14
A6 =	19		26		A13
A7 🖬	20		25		A12
A8 =	21		24		A11
A9 =	22		23	-	A10

- 2. NC pins are not connected internally to the die.
- Package type BVJXI is JEDEC compliant compared to package type BVXI. The difference between the two is that the higher and lower byte I/Os (I/O_[7:0] and I/O_[15:8] balls are swapped.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied–55 °C to +125 °C
Supply voltage on V_{CC} relative to GND $^{[4]}$ –0.5 V to V_{CC} + 0.5 V
DC voltage applied to outputs in HI-Z State $^{[4]}$ 0.5 V to V_{CC} + 0.5 V

DC Electrical Characteristics

Over the operating range of -40 °C to 85 °C

DC input voltage ^[4]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (in LOW state)	20 mA
Static discharge voltage	
(MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Grade	Ambient Temperature	V _{cc}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

	-		Test Oser ditions			10 ns / 15 ns	S	L Inciá	
Parameter	Desc	cription	Test Conditions		Min	Typ ^[5]	Мах	Unit	
V _{OH}	Output HIGH	1.65 V to 2.2 V	V _{CC} = Min, I _{OH} = –0.1 m	A	1.4	_	-	V	
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = -1.0 m	A	2	_	-		
		2.7 V to 3.6 V	V _{CC} = Min, I _{OH} = -4.0 m	A	2.2	-	-		
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -4.0 m	A	2.4	-	-		
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -0.1 m	A	$V_{CC} - 0.5^{[6]}$	-	-		
V _{OL}	Output LOW	1.65 V to 2.2 V	V_{CC} = Min, I_{OL} = 0.1 mA	L.	-	-	0.2	V	
	voltage	2.2 V to 2.7 V	V_{CC} = Min, I_{OL} = 2 mA		-	-	0.4		
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		-	-	0.4		
	4		V _{CC} = Min, I _{OL} = 8 mA		-	-	0.4		
V _{IH}	Input HIGH 1.65 V to 2.2		-		1.4	_	V _{CC} + 0.2 ^[4]	V	
voltage	2.2 V to 2.7 V	-		2	_	V _{CC} + 0.3 ^[4]			
		2.7 V to 3.6 V	-		2	_	V _{CC} + 0.3 ^[4]		
		4.5 V to 5.5 V	-		2.2	_	V _{CC} + 0.5 ^[4]		
V _{IL}	Input LOW	1.65 V to 2.2 V	-		-0.2 ^[4]	_	0.4	V	
	voltage	2.2 V to 2.7 V	-		-0.3 ^[4]	_	0.6		
		2.7 V to 3.6 V	-		-0.3 ^[4]	_	0.8		
		4.5 V to 5.5 V	-		-0.5 ^[4]	_	0.8		
I _{IX}	Input leakage c	urrent	$GND \leq V_{IN} \leq V_{CC}$		-1	_	+1	μA	
I _{OZ}	Output leakage	current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , Out	put disabled	-1	_	+1	μA	
I _{CC}	Operating supp	ly current	Max V _{CC} , I _{OUT} = 0 mA,	f = 100 MHz	_	38	45	mA	
			CMOS levels	f = 66.7 MHz	_	_	40		
I _{SB1}	Automatic CE p current – TTL i		$\begin{array}{c} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH}, \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		-	-	15	mA	
I _{SB2}	Automatic CE p current – CMO	oower-down S inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \ \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0 \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \ \text{V or V}_{\text{IN}} \end{array}$.2 V, ∣ ≤ 0.2 V, f = 0	-	6	8	mA	

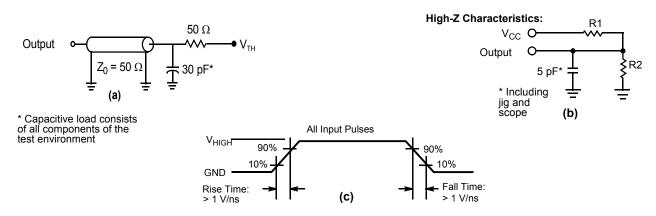
Notes

4. $V_{IL(min)}$ = -2.0 V and $V_{IH(max)}$ = V_{CC} + 2 V for pulse durations of less than 2 ns.

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

6. This parameter is guaranteed by design and not tested.

Capacitance


Parameter ^[7]	Description	Test Conditions	48-ball VFBGA	44-pin SOJ	44-pin TSOP II	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	10	10	10	pF
C _{OUT}	I/O capacitance	$V_{CC} = V_{CC(typ)}$	10	10	10	pF

Thermal Resistance

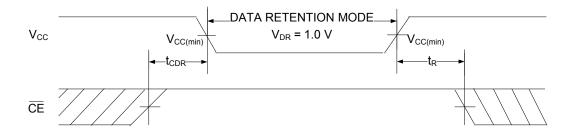
Parameter [7]	Description	Test Conditions	48-ball VFBGA	44-pin SOJ	44-pin TSOP II	Unit
JA	(junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer	31.35	55.37	68.85	°C/W
30	Thermal resistance (junction to case)	printed circuit board	14.74	30.41	15.97	°C/W

AC Test Loads and Waveforms

Figure 4. AC Test Loads and Waveforms ^[8]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	0.9	1.5	1.5	V
V _{HIGH}	1.8	3	3	V

- 7. Tested initially and after any design or process changes that may affect these parameters.
- 8. Full-device AC operation assumes a 100- μ s ramp time from 0 to V_{CC(min)} and a 100- μ s wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V_{CC} for data retention		1	Ι	V
I _{CCDR}	Data retention current	$V_{CC} = 1.2 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}^{[9]}, V_{IN} \ge V_{CC} - 0.2 \text{ V}, \text{ or } V_{IN} \le 0.2 \text{ V}$	_	8	mA
t _{CDR} ^[10]	Chip deselect to data retention time		0	-	ns
t _R ^[9, 10]	Operation recovery time	V _{CC} ≥ 2.2 V	10	-	ns
		V _{CC} < 2.2 V	15	_	ns

Data Retention Waveform

Figure 5. Data Retention Waveform ^[9]

Notes

9. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \ge 100 µs or stable at V_{CC (min)} \ge 100 µs.

10. These parameters are guaranteed by design.

AC Switching Characteristics

Over the operating range of -40 °C to 85 °C

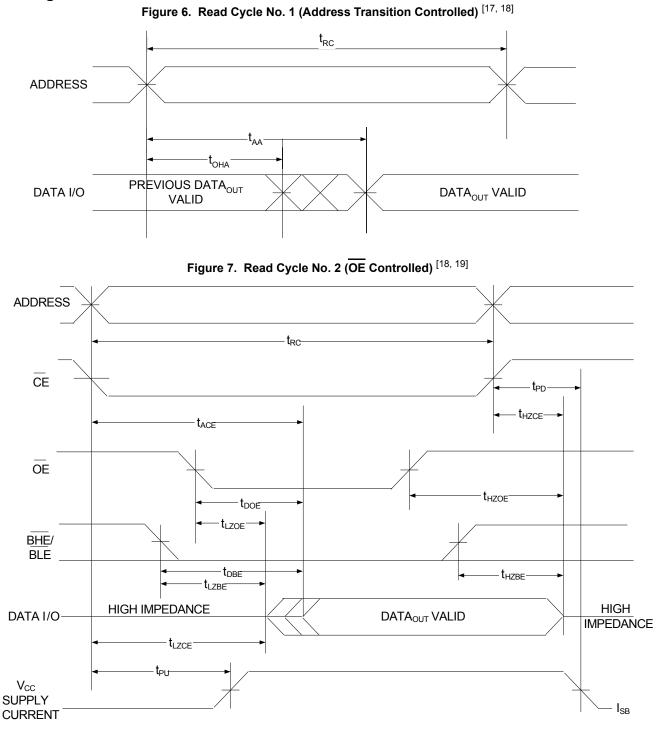
Parameter [11]	Description	10	10 ns		15 ns	
Parameter	Description	Min	Max	Min	Мах	Unit
Read Cycle			•	•		
t _{RC}	Read cycle time	10	_	15	_	ns
t _{AA}	Address to data	-	10	-	15	ns
t _{OHA}	Data hold from address change	3	_	3	-	ns
t _{ACE}	CE LOW to data ^[12]	-	10	-	15	ns
t _{DOE}	OE LOW to data	_	4.5	_	8	ns
t _{LZOE}	OE LOW to low impedance [13, 14]	0	-	0	-	ns
t _{HZOE}	OE HIGH to HI-Z ^[13, 14]	_	5	_	8	ns
t _{LZCE}	CE LOW to low impedance ^[12, 13, 14]	3	-	3	-	ns
t _{HZCE}	CE HIGH to HI-Z [12, 13, 14]	_	5	_	8	ns
t _{PU}	CE LOW to power-up ^[12, 14, 15]	0	-	0	_	ns
t _{PD}	CE HIGH to power-down ^[12, 14, 15]	_	10	-	15	ns
t _{DBE}	Byte enable to data valid	_	4.5	-	8	ns
t _{LZBE}	Byte enable to low impedance ^[14]	0	-	0	_	ns
t _{HZBE}	Byte disable to HI-Z ^[14]	_	6	-	8	ns
Write Cycle ^{[1}	5, 16]					
t _{WC}	Write cycle time	10	-	15	_	ns
t _{SCE}	CE LOW to write end ^[12]	7	-	12	_	ns
t _{AW}	Address setup to write end	7	-	12	_	ns
t _{HA}	Address hold from write end	0	-	0	_	ns
t _{SA}	Address setup to write start	0	-	0	_	ns
t _{PWE}	WE pulse width	7	-	12	_	ns
t _{SD}	Data setup to write end	5	-	8	_	ns
t _{HD}	Data hold from write end	0	-	0	-	ns
t _{LZWE}	WE HIGH to low impedance ^[13, 14]	3	-	3	-	ns
t _{HZWE}	WE LOW to HI-Z ^[13, 14]	_	5	-	8	ns
t _{BW}	Byte Enable to write end	7	-	12	-	ns

Notes

14. These parameters are guaranteed by design and are not tested.

15. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$, and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

16. The minimum write cycle pulse width in Write Cycle No. 2 (WE Controlled, $\overline{\text{OE}}$ LOW) should be equal to sum of t_{SD} and t_{HZWE}.


^{11.} Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3 V). Test conditions for the read cycle use output loading, as shown in part (a) of Figure 4 on page 6, unless specified otherwise.

^{12.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.

^{13.} t_{HZOE}, t_{HZCE}, t_{HZOE}, t_{LZOE}, t_{LZOE}, t_{LZOE}, t_{LZWE}, and t_{LZBE} are specified with a load capacitance of 5 pF, as shown in part (b) of Figure 4 on page 6. Transition is measured ±200 mV from steady state voltage.

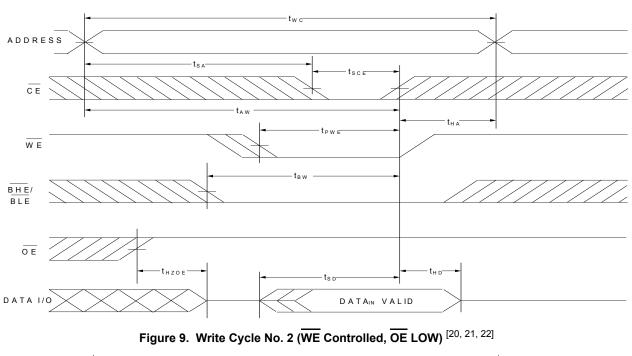
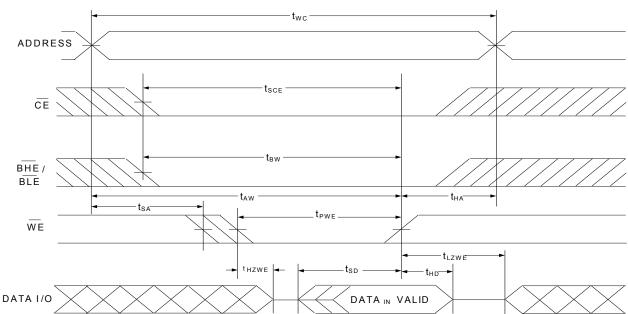
Switching Waveforms

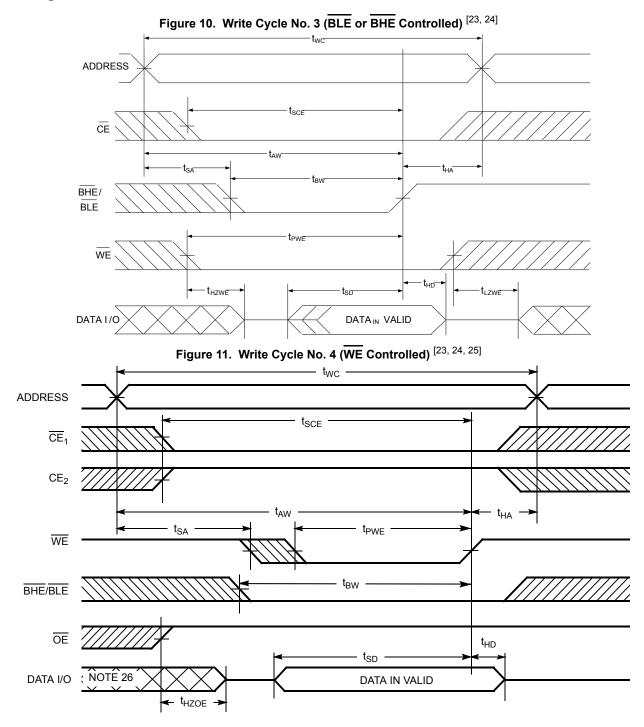
Notes 17. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} .

18. WE is HIGH for the read cycle.

19. Address valid prior to or coincident with \overline{CE} LOW transition.

Switching Waveforms (continued)

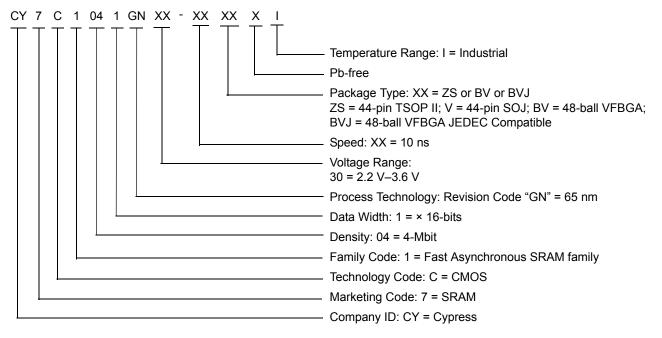

Figure 8. Write Cycle No. 1 (CE Controlled) ^[20, 21]

- 20. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$, and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 21. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 22. The minimum write cycle pulse width should be equal to sum of t_{SD} and t_{HZWE} .

Switching Waveforms (continued)

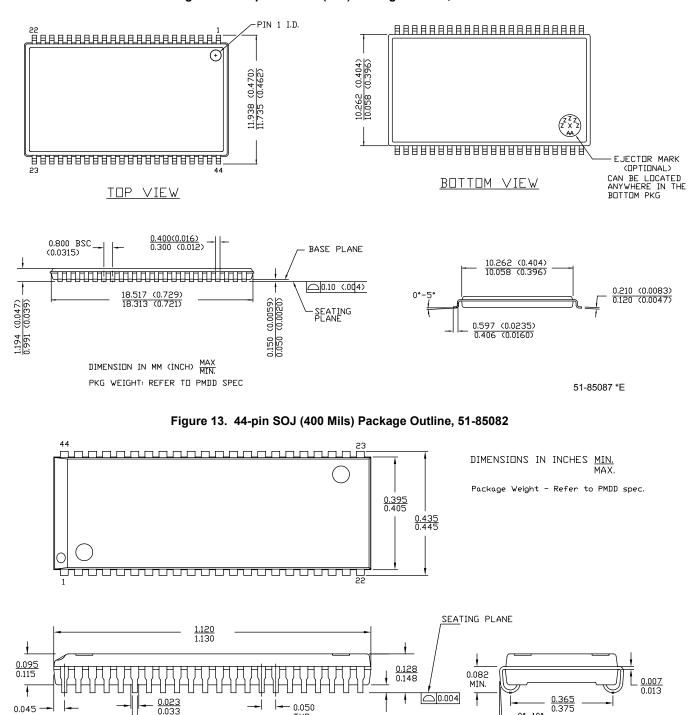
- 23. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$, and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 24. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$, or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 25. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 26. During this period the I/Os are in output state. Do not apply input signals.

Truth Table


CE	OE	WE	BLE	BHE	I/O ₀ I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	X ^[27]	X ^[27]	X ^[27]	X ^[27]	HI-Z	HI-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	HI-Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	HI-Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	HI-Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	HI-Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	HI-Z	HI-Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
10	2.2 V–3.6 V	CY7C1041GN30-10ZSXI	51-85087	44-pin TSOP II	Industrial
		CY7C1041GN30-10VXI 51-85082 44-pin SOJ		44-pin SOJ	
	CY7C1041GN30-10BVXI		51-85150	48-ball VFBGA (6 × 8 × 1.0 mm)	1
		CY7C1041GN30-10BVJXI	51-85150	48-ball VFBGA (6 × 8 × 1.0 mm), JEDEC Compatible	
	4.5 V–5.5 V	CY7C1041GN-10ZSXI	51-85087	44-pin TSOP II	
		CY7C1041GN-10VXI	51-85082	44-pin SOJ]


Ordering Code Definitions

Package Diagrams

Figure 12. 44-pin TSOP II (Z44) Package Outline, 51-85087

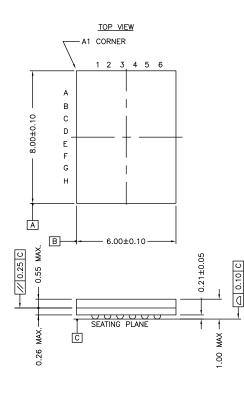
TYP.

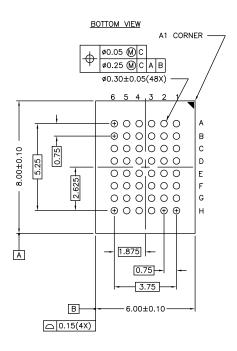
0.025 MIN

51-85082 *E

0°-10°

<u>0.013</u> 0.023


MAX.



Package Diagrams (continued)

NOTE:

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Acronyms

Acronym	Description		
BHE	byte high enable		
BLE	byte low enable		
CE	chip enable		
CMOS	complementary metal oxide semiconductor		
I/O	input/output		
OE	output enable		
SRAM	static random-access memory		
TSOP	thin small outline package		
TTL	transistor-transistor logic		
VFBGA	very fine-pitch ball grid array		
WE	write enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	Degrees Celsius		
MHz	megahertz		
μA	microamperes		
μS	microseconds		
mA	milliamperes		
mm	millimeters		
ns	nanoseconds		
Ω	ohms		
%	percent		
pF	picofarads		
V	volts		
W	watts		

Document History Page

Document Title: CY7C1041GN, 4-Mbit (256K words × 16 bit) Static RAM Document Number: 001-95413				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	5074414	NILE	01/06/2016	New data sheet.
*A	5082573	NILE	01/12/2016	Updated Logic Block Diagram – CY7C1041GN. Updated Ordering Information: Updated part numbers.
*В	5120171	VINI	02/01/2016	Updated Logic Block Diagram – CY7C1041GN.
*C	5322961	VINI	06/24/2016	Updated Ordering Information: Updated part numbers. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-95413 Rev. *C

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor: CY7C1041GN30-10ZSXI