

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

August 2016

Single-Channel: 6N138M, 6N139M Dual-Channel: HCPL2730M, HCPL2731M 8-Pin DIP Low Input Current High Gain Split Darlington Optocouplers

Features

- Low Current 0.5 mA
- Superior CTR 2000%
- Superior CMR 10 kV/µs
- CTR Guaranteed 0 to 70°C
- Dual Channel HCPL2730M, HCPL2731M
- · Safety and Regulatory Approvals
 - UL1577, 5,000 VAC_{RMS} for 1 Minute
 - DIN EN/IEC60747-5-5

Applications

- · Digital Logic Ground Isolation
- · Telephone Ring Detector
- EIA-RS-232C Line Receiver
- High Common Mode Noise Line Receiver
- μP Bus Isolation
- Current Loop Receiver

Description

The single-channel, 6N138M, 6N139M and dual-channel HCPL2730M, HCPL2731M optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730M and HCPL2731M, an integrated emitter-base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5 mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of 10 kV/µs.

Related Resources

- www.fairchildsemi.com/products/optoelectronics/
- www.fairchildsemi.com/pf/HC/HCPL0700.html
- www.fairchildsemi.com/pf/HC/HCPL0730.html
- www.fairchildsemi.com/pf/HC/HCPL0731.html

Schematics

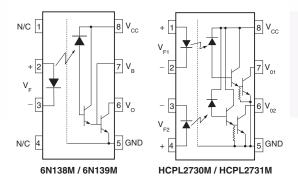


Figure 1. Schematics

Package Outlines

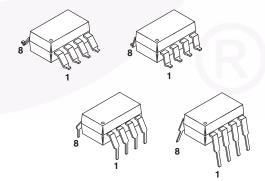


Figure 2. Package Options

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Parameter	
	< 150 V _{RMS}	I–IV
Latella Cara Charlis and a DINLYDE	< 300 V _{RMS}	I–IV
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< 450 V _{RMS}	I–III
The first table 1,1 of fraction walls voltage	< 600 V _{RMS}	I–III
	< 1,000 V _{RMS} (Option T, TS)	I-III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, V_{IORM} x 1.6 = V_{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	2,262	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	2,651	V _{peak}
V_{IORM}	Maximum Working Insulation Voltage	1,414	V_{peak}
V_{IOTM}	Highest Allowable Over-Voltage	6,000	V_{peak}
	External Creepage	≥ 8.0	mm
	External Clearance	≥ 7.4	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10.16	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
T _S	Case Temperature ⁽¹⁾	150	°C
I _{S,INPUT}	Input Current ⁽¹⁾	200	mA
P _{S,OUTPUT}	Output Power (Duty Factor ≤ 2.7%) ⁽¹⁾	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit value - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
T_J	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec	°C

Symbol	Parameter Device		Value	Unit	
EMITTER					
I _F (avg)	DC/Average Forward Input Current Per Channel	All	20	mA	
I _F (pk)	Peak Forward Input Current Per Channel (50% duty cycle, 1 ms P.W.)	All	40	mA	
I _F (trans)	Peak Transient Input Current Per Channel (≤ 1 µs P.W., 300 pps)	All	1	А	
V_{R}	Reverse Input Voltage Per Channel	All	5	V	
P _D	Input Power Dissipation Per Channel ⁽²⁾	All	35	mW	
DETECTOR					
I _O (avg)	Average Output Current Per Channel	All	60	mA	
V _{ER}	Emitter-Base Reverse Voltage	6N138M, 6N139M	0.5	V	
	Supply Voltage Output Voltage	6N138M, HCPL2730M	-0.5 to 7.0	V	
V_{CC}, V_{O}	Supply Voltage, Output Voltage	6N139M, HCPL2731M	-0.5 to 18.0	V	
Po	Output Power Dissipation Per Channel	All	100	mW	

Note:

2. No derating required for devices operated within the T_{OPR} specification (6N138M and 6N139M only).

Electrical Characteristics

Individual Component Characteristics

(V_{CC} = 5.0 V, T_A = 0°C to 70°C unless otherwise specified. Typical value is measured at T_A = 25°C.)

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER				•			
\/	Input Forward Voltage	All	I _F = 1.6 mA, T _A = 25°C		1.30	1.70	V
V_{F}	Imput Forward voltage	All	I _F = 1.6 mA			1.75	V
BV_R	Input Reverse Breakdown Voltage	All	I _R = 10 μA, T _A = 25°C	5.0	19.0		V
$\Delta V_F / \Delta T_A$	Temperature Coefficient of Forward Voltage	All	I _F = 1.6 mA		-1.94		mV/°C
DETECTO	R						
	Logic Low Supply	6N138M, 6N139M	I_F = 1.6 mA, V_O = Open, V_{CC} = 18 V		0.4	1.5	A
ICCL	Current	HCPL2730M	$V_{CC} = 7 \text{ V}$ $I_{F1} = I_{F2} = 1.6 \text{ mA},$		1.25	3	mA
		HCPL2731M	1		1.25	3	
	Logic High Supply	6N138M, 6N139M	$I_F = 0$ mA, $V_O = Open$, $V_{CC} = 18$ V		0.0003	10	
I _{CCH}	Current		$V_{CC} = 7 \text{ V}$ $I_{F1} = I_{F2} = 0 \text{ mA},$		0.0003	20	μA
			$V_{CC} = 18 \text{ V} V_{O1} = V_{O2} = \text{Open}$	0.0003		20	

Transfer Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
COUPLED							
		6N138M	I _F = 1.6 mA, V _O = 0.4 V,	300	1600		
		HCPL2730M	V _{CC} = 4.5 V	300	2400		
CTR	Current Transfer	6N139M	$I_F = 0.5 \text{ mA}, V_O = 0.4 \text{ V},$	400	2000		%
CIK	Ratio ⁽³⁾⁽⁴⁾	HCPL2731M	V _{CC} = 4.5 V	400	3500		/0
		6N139M	I _F = 1.6 mA, V _O = 0.4 V,	500	1600		
		HCPL2731M	V _{CC} = 4.5 V	300	2400		
		6N138M	I _F = 0 mA, V _O = V _{CC} = 7 V		0.001	250	μA
Levi	I _{OH} Logic High Output Current	HCPL2730M			0.001	200	
ЮН		6N139M	$I_{\rm F} = 0 \text{ mA}, V_{\rm O} = V_{\rm CC} = 18 \text{ V}$		0.0036	100	
		HCPL2731M	1F - 0 111A, VO - VCC - 10 V			100	
		6N138M	I _F = 1.6 mA, I _O = 4.8 mA,		0.06	0.4	
		HCPL2730M	V _{CC} = 4.5 V		0.05	0.4	
		6N139M	$I_F = 0.5 \text{ mA}, I_O = 2 \text{ mA},$ $V_{CC} = 4.5 \text{ V}$		0.05	0.4	
\	Logic Low Output Volt-	6N139M	I _F = 1.6 mA, I _O = 8 mA,		0.093	0.4	
V_{OL}	age ⁽⁴⁾	HCPL2731M	V _{CC} = 4.5 V		0.08	0.4	V
		6N139M	I _F = 5 mA, I _O = 15 mA,		0.13	0.4	
		HCPL2731M	V _{CC} = 4.5 V		0.12	0.4	
		6N139M	I _F = 12 mA, I _O = 24 mA,		0.18	0.4	
		HCPL2731M	V _{CC} = 4.5 V		0.17	0.4	

Notes:

- Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_F, times 100%.
- 4. Pin 7 open. (6N138M and 6N139M only)

Electrical Characteristics (Continued)

(V_{CC} = 5.0 V, T_A = 0°C to 70°C unless otherwise specified. Typical value is measured at T_A = 25°C.)

Switching Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
		6N139M	$R_L = 270 \Omega$, $I_F = 12 \text{ mA}$		0.2	2	
		HCPL2730M, HCPL2731M	$R_L = 270 \ \Omega, I_F = 12 \ \text{mA}$		0.5	3	
+	Propagation Delay Time to Logic	6N138M	$R_L = 2.2 \text{ k}\Omega, I_F = 1.6 \text{ mA}$		1.0	15	
t _{PHL}	LOW ⁽⁴⁾ (Fig. 15)	HCPL2730M, HCPL2731M	R_L = 2.2 kΩ, I_F = 1.6 mA		2.5	25	μs
		6N139M	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA}$		2.5	30	
		HCPL2731M	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA}$		8.4	120	
		6N139M	R_L = 270 Ω, I_F = 12 mA		1.3	10	
	Propagation Delay t _{PLH} Time to Logic HIGH ⁽⁴⁾ (Fig. 15)	HCPL2730M, HCPL2731M	R_L = 270 Ω, I_F = 12 mA		1.0	15	
t _{PLH}		6N138M, HCPL2730M, HCPL2731M	$R_L = 2.2 \text{ k}\Omega, I_F = 1.6 \text{ mA}$		7.3	50	μs
		6N139M, HCPL2731M	R_L = 4.7 kΩ, I_F = 0.5 mA		13.6	90	
CM _H	Common Mode Transient Immunity at Logic High ⁽⁵⁾ (Fig. 16)	All	$I_F = 0 \text{ mA}, IV_{CM}I = 10 V_{P-P},$ $R_L = 2.2 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	1,000	10,000		V/µs
CM _L	Common Mode Transient Immunity at Logic Low ⁽⁵⁾ (Fig. 16)	All	I_F = 1.6 mA, $IV_{CM}I$ = 10 V_{P-P} , R_L = 2.2 k Ω , T_A = 25°C	1,000	10,000		V/µs

Note:

5. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic HIGH state (i.e., V_O > 2.0 V). Common mode transient immunity in logic LOW level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic LOW state (i.e., V_O < 0.8 V).</p>

Electrical Characteristics (Continued)

Isolation Characteristics (T_A = 25°C unless otherwise specified.)

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Withstand Insulation Test Voltage ⁽⁶⁾⁽⁷⁾	All	$RH \le 50\%$, $T_A = 25^{\circ}C$, $I_{I-O} \le 10 \ \mu A$, $t = 1 \ min$, $f = 50 \ Hz$	5,000			VAC _{RMS}
R _{I-O}	Resistance (Input to Output) ⁽⁶⁾	All	V _{I-O} = 500 V _{DC}		10 ¹¹		Ω
C _{I-O}	Capacitance (Input to Output) ⁽⁶⁾⁽⁸⁾	All	f = 1 MHz, V _{I-O} = 0 V		1		pF
I _{I-I}	Input-Input Insulation Leakage Current ⁽⁹⁾	HCPL2730M, HCPL2731M	$RH \le 45\%$, $V_{I-I} = 500 V_{DC}$, $t = 5 sec$		0.005		μA
R _{I-I}	Input-Input Resistance ⁽⁹⁾	HCPL2730M, HCPL2731M	V _{I-I} = 500 V _{DC}		10 ¹¹		Ω
C _{I-I}	Input-Input Capacitance ⁽⁹⁾	HCPL2730M, HCPL2731M	f = 1 MHz		0.03		pF

Notes:

- 6. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 7. 5000 VAC_{RMS} for 1 minute duration is equivalent to 6000 VAC_{RMS} for 1 second duration.
- 8. For dual channel devices, C_{I-O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Electrical Characteristics (Continued)

T_A = 25°C unless otherwise specified

Current Limiting Resistor Calculations: R_1 (Non-Invert) = $V_{CC1} - V_{DF} - V_{OL1}$

ΙF

 $R_1 \text{ (Invert)} = V_{\underline{CC1}} - V_{\underline{OH1}} - V_{\underline{DF}}$

 $R_2 = V_{CC2} - V_{OLX} (@ I_L - I_2)$

Where:

V_{CC1} = Input Supply Voltage

V_{CC2} = Output Supply Voltage

V_{DF} = Diode Forward Voltage

V_{OL1} = Logic "0" Voltage of Driver

V_{OH1} = Logic "1" Voltage of Driver

I_F = Diode Forward Current

V_{OLX} = Saturation Voltage of Output Transistor

I_L = Load Current Through Resistor R₂

I₂ = Input Current of Output Gate

INDUT				R ₂ (Ω) @ OUT	PUT CO	NFIGUR	ATION												
INPUT CONFIG	URATION	R ₁ (Ω)	CMOS @ 5 V	CMOS @ 10 V	74XX	74LXX	74SXX	74LSXX	74HXX											
смоѕ	NON-INV.	2000																		
@ 5 V	INV.	510																		
смоѕ	NON-INV.	5100																		
@ 10 V	INV.	4700																		
7477	NON-INV.	2200																		
74XX	INV.	180		2200		4000	1000	1000												
741 VV	NON-INV.	1800	4000		750				500											
74LXX	INV.	100	1000		750	1000			560											
740VV	NON-INV.	2000																		
74SXX	INV.	360																		
741 CVV	NON-INV.	2000							١.											
74LSXX	INV.	180																		
741177	NON-INV.	2000																		
74HXX	INV.	180																		

Fig. 3 Resistor Values for Logic Interface

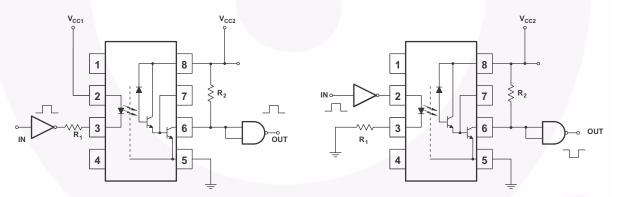


Fig. 4 Non-Inverting Logic Interface in 5 Inverting Logic in Fig. 5 Inverting Logic Interface

Typical Performance Curves

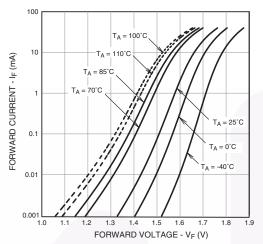


Fig. 6 LED Forward Current vs. Forward Voltage

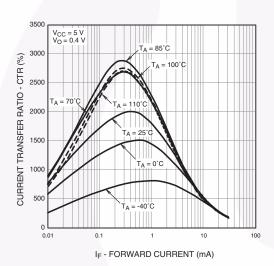


Fig. 8 Current Transfer Ratio vs. Forward Current (6N138M / 6N139M Only)

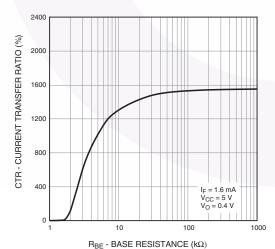


Fig. 10 Current Transfer Ratio vs. Base-Emitter Resistance (6N138M / 6N139M Only)

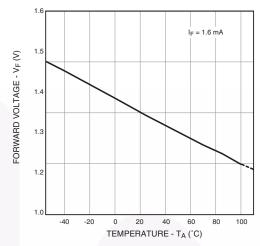


Fig. 7 LED Forward Voltage vs. Temperature

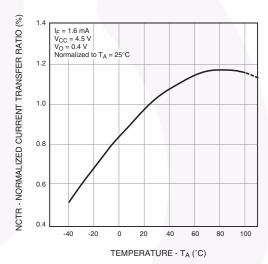


Fig. 9 Normalized Current Transfer Ratio vs. Ambient Temperature (6N138M / 6N139M Only)

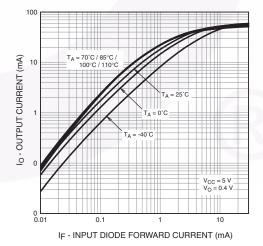


Fig. 11 Output Current vs. Input Diode Forward Current (6N138M / 6N139M Only)

Typical Performance Curves (Continued)

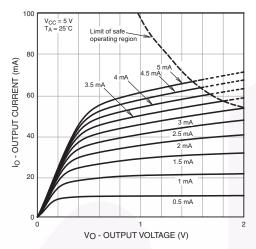


Fig. 12 Output Current vs Output Voltage (6N138M / 6N139M Only)

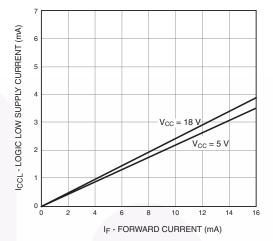


Fig. 13 Logic Low Supply Current vs. Input Diode Forward Current (6N138M / 6N139M Only)

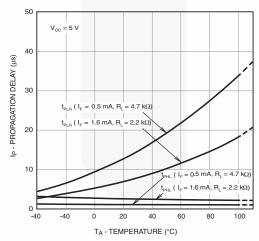


Fig. 14 Propagation Delay vs. Temperature (6N138M / 6N139M Only)

Test Circuits

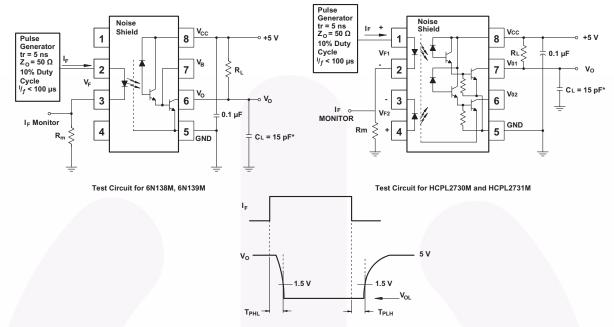


Fig. 15 Switching Time Test Circuit

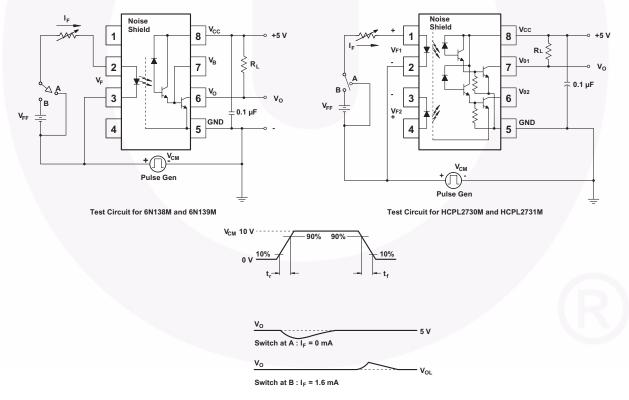
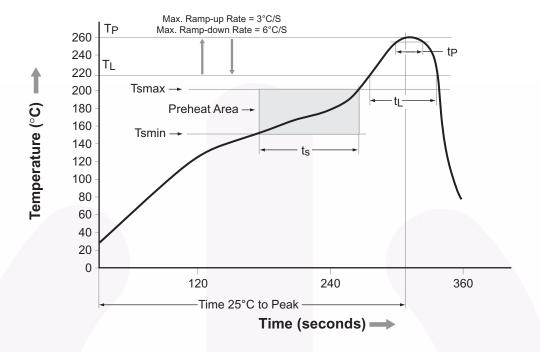



Fig. 16 Common Mode Immunity Test Circuit

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60-150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

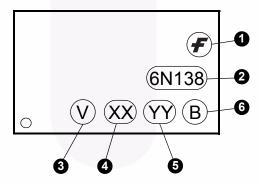
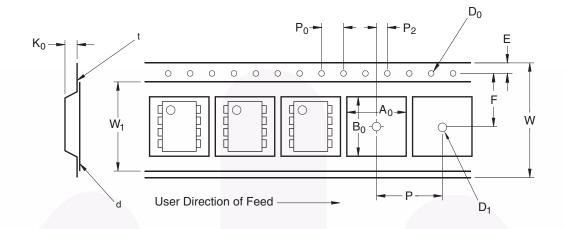
Ordering Information

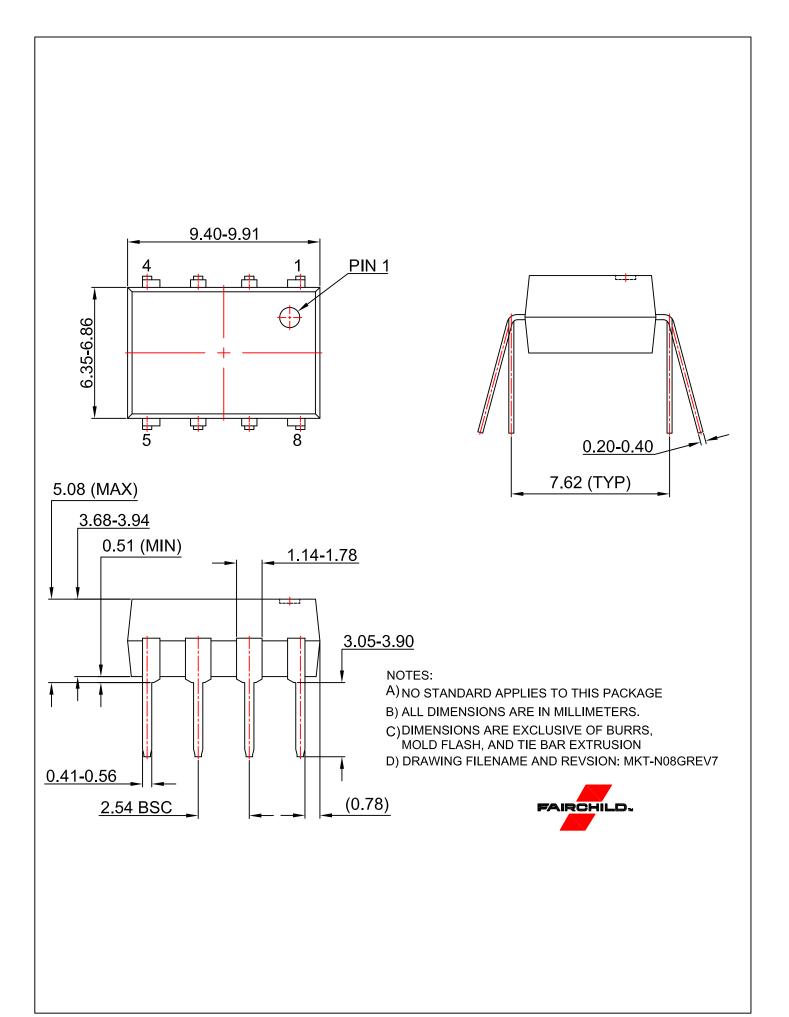
Part Number	Package	Packing Method
6N138M	DIP 8-Pin	Tube (50 units per tube)
6N138SM	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
6N138SDM	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
6N138VM	DIP 8-Pin, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N138SVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N138SDVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option	Tape and Reel (1,000 units per reel)
6N138TVM	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N138TSVM	SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N138TSR2VM	SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option	Tape and Reel (1,000 units per reel)

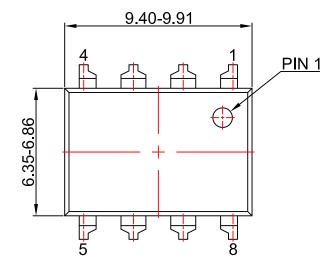
Note:

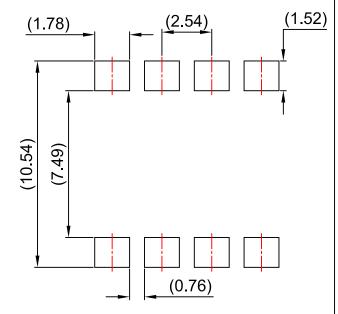
The product orderable part number system listed in this table also applies to the 6N139M, HCPL2730M and HCPL2731M product families.

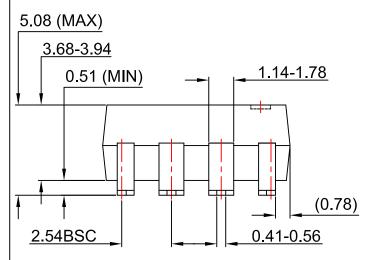
Marking Information


Figure 17. Top Mark

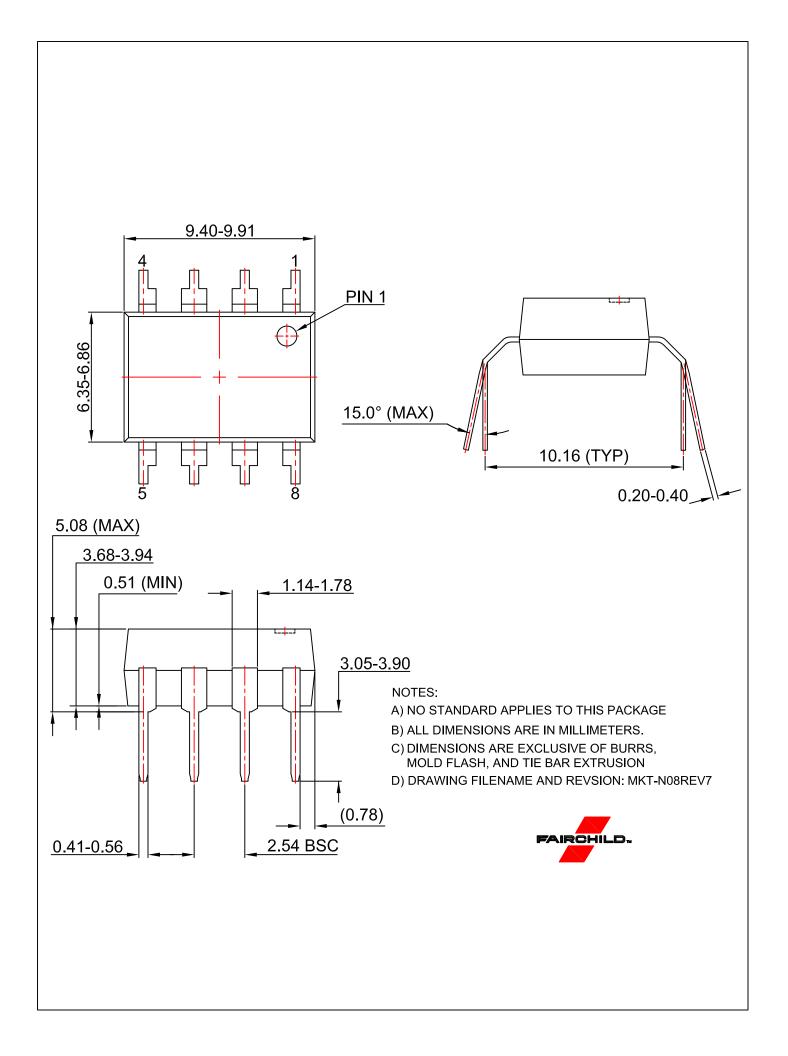

Definitions					
1	Fairchild Logo				
2	Device Number				
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)				
4	Two Digit Year Code, e.g., '16'				
5	Two Digit Work Week Ranging from '01' to '53'				
6	Assembly Package Code				


Carrier Tape Specifications (Option SD)



Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30





NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N08Hrev7.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms			
Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 6N138SDM 6N138SM 6N138M