

FDS4559

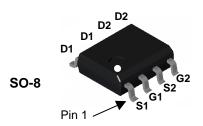
60V Complementary PowerTrench®MOSFET

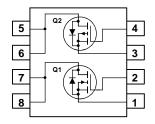
General Description

This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Applications

- DC/DC converter
- · Power management
- LCD backlight inverter


Features


Q1: N-Channel

4.5 A, 60 V
$$R_{DS(on)} = 55 \ m\Omega \ @ \ V_{GS} = 10V$$

$$R_{DS(on)} = 75 \ m\Omega \ @ \ V_{GS} = 4.5V$$

Q2: P-Channel

$$-3.5$$
 A, -60 V R_{DS(on)} = 105 m Ω @ V_{GS} = -10 V
$$R_{DS(on)} = 135$$
 m Ω @ V_{GS} = -4.5 V

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		60	-60	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	4.5	-3.5	А
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation		2		W
	Power Dissipation for Single Operation	(Note 1a)	1.	6	
		(Note 1b)	1.	2	
		(Note 1c)	1		
T _J , T _{STG}	Operating and Storage Junction Temperation	ture Range	-55 to	+175	°C

Thermal Characteristics

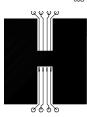
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device Marking Device		Tape width	Quantity	
FDS4559	FDS4559	13" 12mm		2500 units	

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-So	ource Avalanche Rating]S (Note 1)					
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 30 \text{ V}, \qquad I_{D} = 4.5 \text{ A}$	Q1			90	mJ
I _{AR}	Maximum Drain-Source Avalanche Current		Q1			4.5	Α
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	Q1 Q2	60 –60			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C $I_D = -250 \mu A$, Referenced to 25°C	Q1 Q2		58 -49		mV/°C
l _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 –1	μΑ
GSS	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q1 Q2			<u>+</u> 100 <u>+</u> 100	nA
On Cha	racteristics (Note 2)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{DS} = V_{GS}, I_D = -250 \mu A$	Q1 Q2	1 -1	2.2 -1.6	3 -3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	Q1 Q2		-5.5 4		mV/°0
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$	Q1		42 72 55	55 94 75	mΩ
		$\begin{aligned} &V_{GS} = -10 \text{ V, } I_D = -3.5 \text{ A} \\ &V_{GS} = -10 \text{ V, } I_D = -3.5 \text{ A, } T_J = 125^{\circ}\text{C} \\ &V_{GS} = -4.5 \text{ V, } I_D = -3.1 \text{ A} \end{aligned}$	Q2		82 130 105	105 190 135	
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	Q1 Q2	20 –20			Α
g fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 4.5 \text{ A}$ $V_{DS} = -5 \text{ V}, I_{D} = -3 \text{ 5 A}$	Q1 Q2		14 9		S
Dynami	c Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = 25 V, V _{GS} = 0 V,	Q1 Q2		650 759		pF
Coss	Output Capacitance	f = 1.0 MHz Q2	Q1 Q2		80 90		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz	Q1 Q2		35 39		pF
Switchin	g Characteristics (Note 2	A					
	G Characteristics (Note 2 Furn-On Delay Time	Q1 V _{DD} = 30 V, I _D = 1 A,	Q1 Q2		11 7	20 14	ns
-	Turn-On Rise Time	$V_{GS} = 10V$, $R_{GEN} = 6 \Omega$	Q1 Q2		8	18 20	ns
l(off)	Turn-Off Delay Time	$Q2$ $V_{DD} = -30 \text{ V}, I_D = -1 \text{ A},$	Q1 Q2		19 19	35 34	ns
-	Turn-Off Fall Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2		6 12	15 22	ns
O _g	Total Gate Charge	Q1 $V_{DS} = 30 \text{ V}, I_{D} = 4.5 \text{ A}, V_{GS} = 10 \text{ V}$	Q1 Q2		12.5 15	18 21	nC
Q _{gs}	Gate-Source Charge	Q2	Q1 Q2		2.4 2.5		nC
Q _{gd}	Gate-Drain Charge	$V_{DS} = -30 \text{ V}, I_{D} = -3.5 \text{ A}, V_{GS} = -10 \text{V}$	Q1 Q2		2.6 3.0		nC

Electrical Characteristics (continued) T_A = 25°C unless otherwise noted


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current		Q1		1.3	Α
			Q2		-1.3	
V _{SD}	Drain-Source Diode Forward	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A}$ (Note 2)	Q1	0.8	1.2	V
	Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.3 \text{ A}$ (Note 2)	Q2	-0.8	-1.2	

Notes

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°C/W when mounted on a .02 in² pad of 2 oz copper

c) 135°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

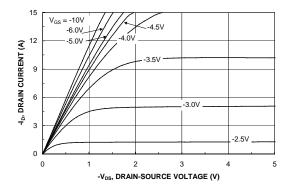


Figure 1. On-Region Characteristics.

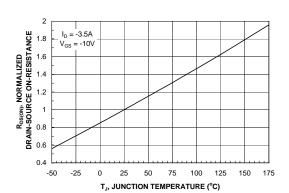


Figure 3. On-Resistance Variation with Temperature.

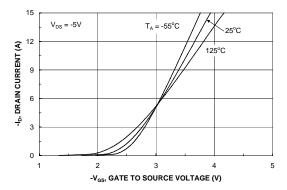


Figure 5. Transfer Characteristics.

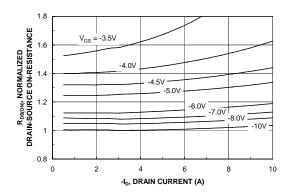


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

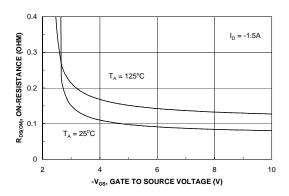


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

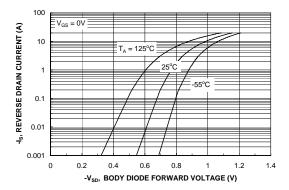


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

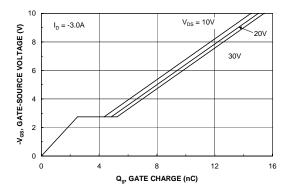


Figure 7. Gate Charge Characteristics.

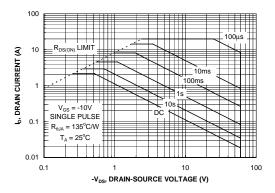


Figure 9. Maximum Safe Operating Area.

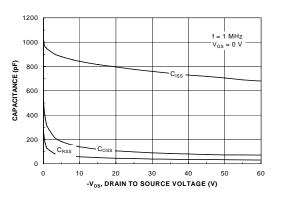


Figure 8. Capacitance Characteristics.

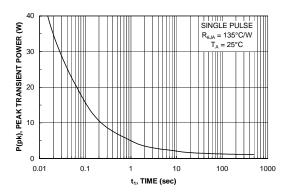


Figure 10. Single Pulse Maximum Power Dissipation.

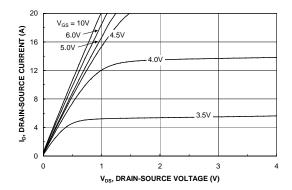


Figure 11. On-Region Characteristics.

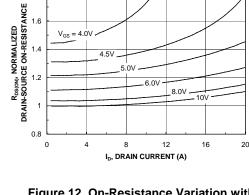


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

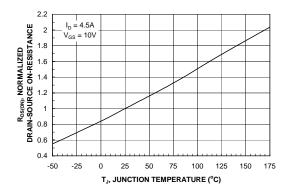


Figure 13. On-Resistance Variation with Temperature.

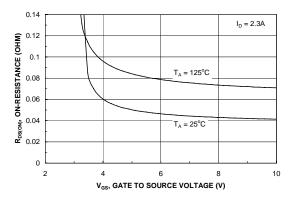


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

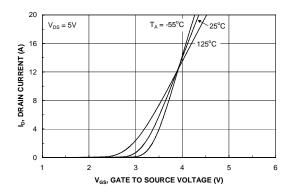


Figure 15. Transfer Characteristics.

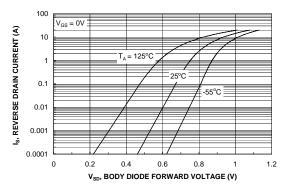
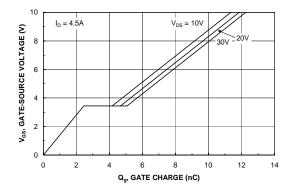



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

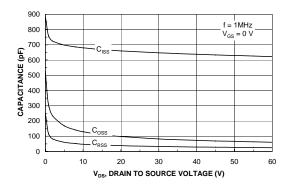
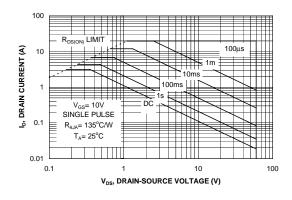



Figure 17. Gate Charge Characteristics.

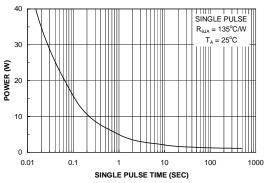


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

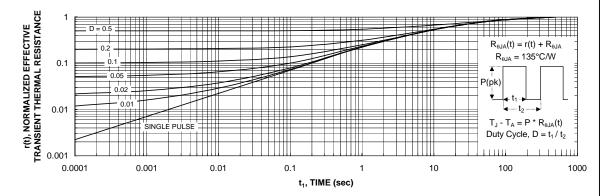


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.

Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\mathsf{B}} \end{array}$

Awinda® Global Power Resource SM AX-CAP®* GreenBridge™

BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™
Dual Cool™ MegaBuck™
EcoSPARK® MICROCOUPLER™
EfficientMax™ MicroFET™

Fairchild®
Fairchild Somiconductor®

MicroPak™
MicroPak™
MicroPak™
MilerDrive™
MilerDrive™
MotionMax™
MotionMax™

Fairchild Semiconductor®
FACT Quiet Series™
FACT©
FACTO®
FACT©
FAStvCore™
FETBench™
FPS™

MotionGrid®
MotionGrid®
MTI®
MVN®
MVN®
mWSaver®
OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-6
SuperMOS®
SyncFET™
Sync-Lock™

SYSTEM
GENERAL®*

TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*
uSerDes™

SerDes"
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™

仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 176

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FDS4559