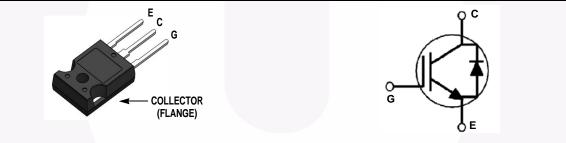
November 2013

FGH80N60FD 600 V Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.8 V @ I_C = 40 A
- High Input Impedance
- Fast Switching
- RoHS Complaint

Applications

Induction Heating, PFC, Telecom, ESS

General Description

Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for induction heating, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

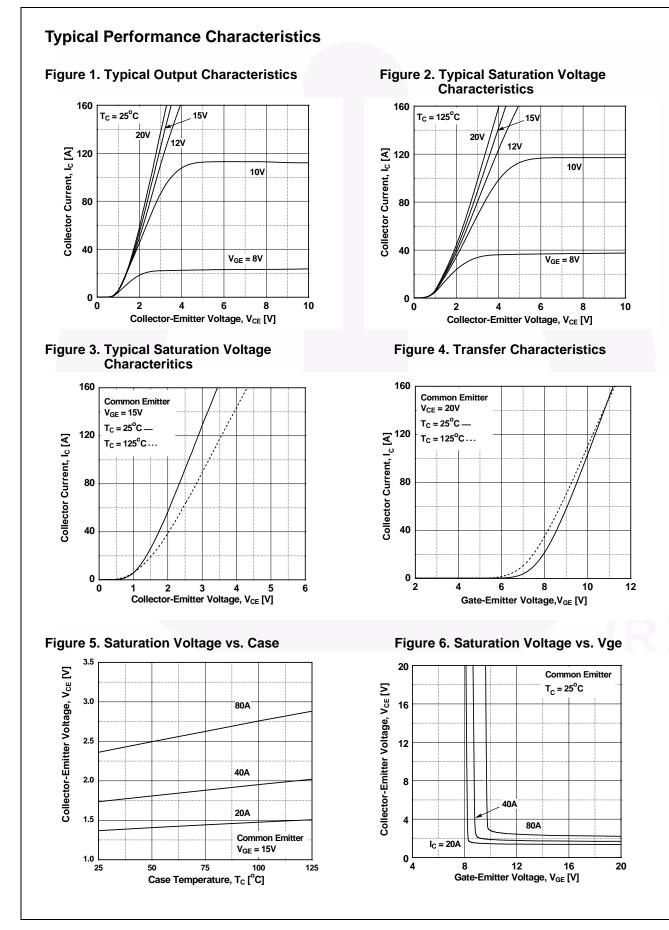
Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	80	A
	Collector Current	@ T _C = 100°C	40	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	160	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	290	W
·D	Maximum Power Dissipation	@ T _C = 100°C	116	W
Т _Ј	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

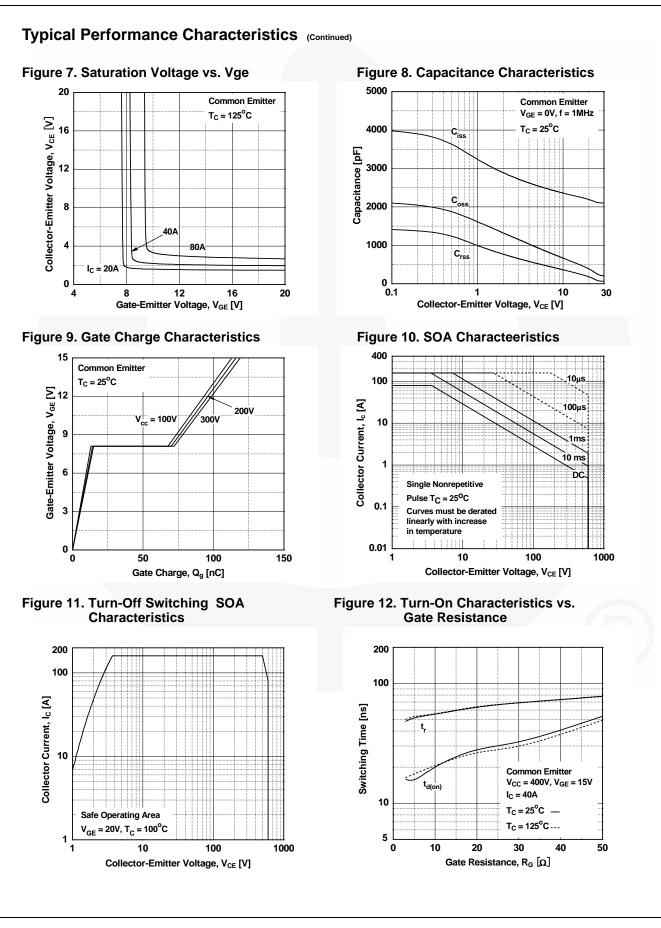
Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction-to-Case		0.43	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction-to-Case		1.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

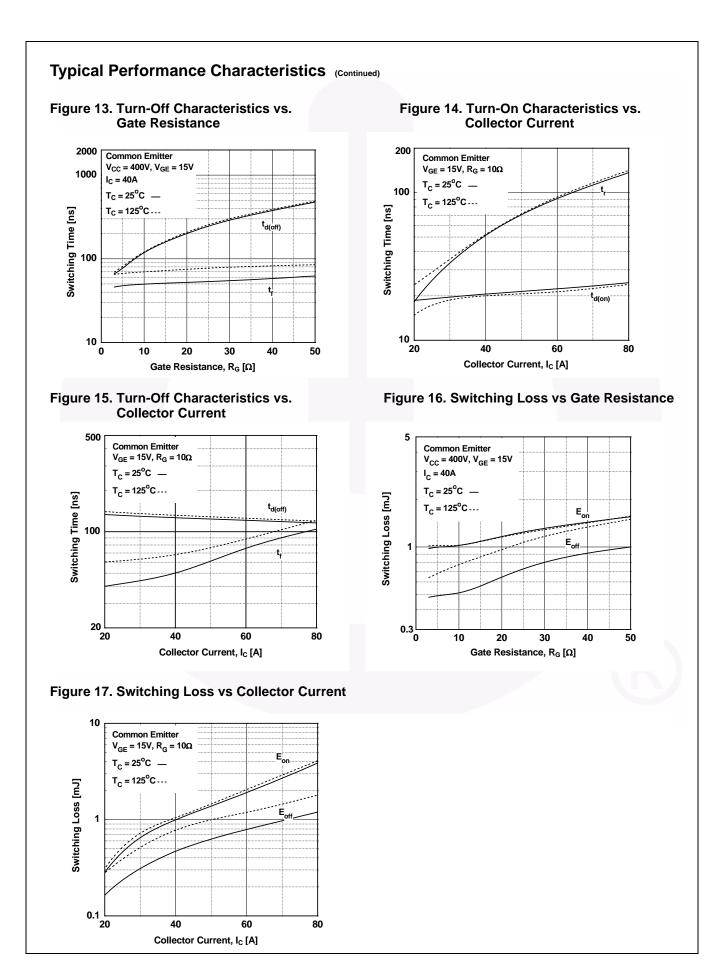

Ō.
Ψ
*
ä
ž
5
ĕ
Ť.
Ü.
Ÿ
-
g
X
<u> </u>
<
*
9
Q
6
¥
0
σ
Ξ
Q
Π

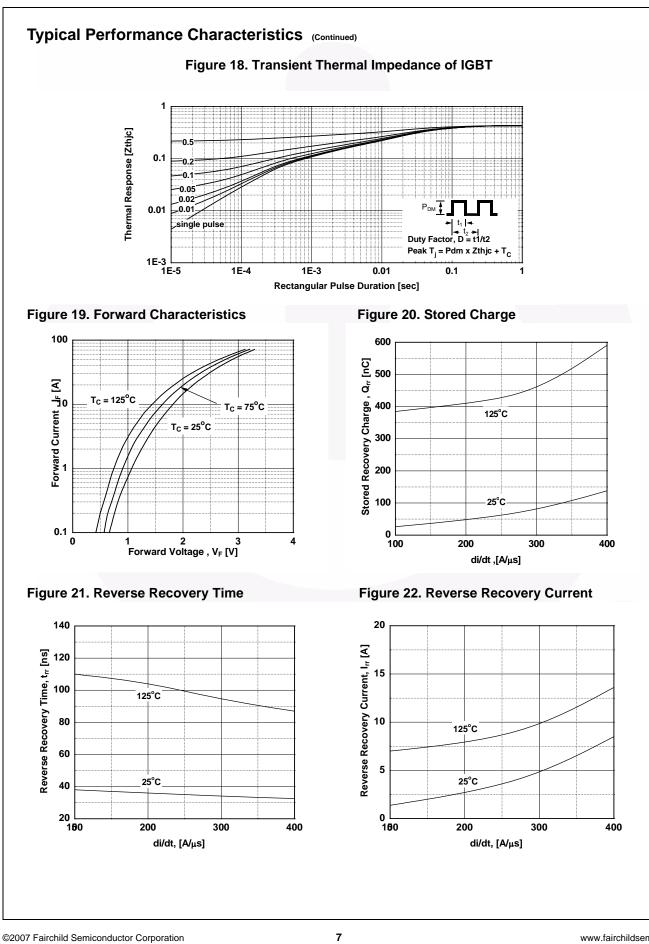
Part NumberTop MarkPackageFGH80N60FDTUFGH80N60FDTO-247		Package	Packing Method	Reel Size	Tape Wi	dth Q	uantity	
		Tube	N/A	N/A		30		
Electric	al Cha	aracteristics	of the IG	BT $T_{C} = 25^{\circ}C$ unless otherw	vise noted			
Symbol		Parameter		Test Condition	s Min.	Тур.	Max.	Unit
Off Charac	teristics							
BV _{CES}		r-Emitter Breakdov	n Voltage	V _{GE} = 0 V, I _C = 250 uA	600			V
ΔBV _{CES} / ΔT _{.1}		ature Coefficient of		$V_{GE} = 0 V, I_C = 250 uA$		0.6		V/°C
ICES	Collecto	r Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V			250	uA
I _{GES}	G-E Lea	kage Current		$V_{GE} = V_{GES}, V_{CE} = 0 V$			±400	nA
On Charac	teristics		¥		l.			
V _{GE(th)}		eshold Voltage		I _C = 250 uA, V _{CE} = V _{GE}	4.5	5.5	7.0	V
GE(III)	_		-	$I_{\rm C} = 40$ A, $V_{\rm GE} = 15$ V		1.8	2.4	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage			$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 125^{\circ}\text{C}$		2.05		V
Dynamic C	haracteri	istics	I		I			
C _{ies}		apacitance				2110		pF
C _{oes}		Capacitance		$V_{CE} = 30 V, V_{GE} = 0 V,$		200		pF
C _{res}	Reverse	Transfer Capacita		f = 1 MHz		60		pF
Switching	Characte	ristics	U		L			
t _{d(on)}	Turn-On Delay Time Rise Time				21		ns	
t _r					56		ns	
t _{d(off)}	Turn-Off	n-Off Delay Time		V _{CC} = 400 V, I _C = 40 A,		126		ns
4(0.1) t _f	Fall Tim			$R_{G} = 10 \Omega$, $V_{GE} = 15 V$,		50	100	ns
E _{on}	Turn-On	Switching Loss		Inductive Load, $T_C = 25^{\circ}C$		1	1.5	mJ
E _{off}	Turn-Off	Switching Loss				0.52	0.78	mJ
E _{ts}	Total Sw	vitching Loss				1.52	2.28	mJ
t _{d(on)}	Turn-On	Delay Time				20		ns
t _r	Rise Tim	ne				54		ns
t _{d(off)}	Turn-Off	Turn-Off Delay Time Fall Time Turn-On Switching Loss		V _{CC} = 400 V, I _C = 40 A,		131		ns
t _f	Fall Tim			$R_G = 10 \Omega$, $V_{GE} = 15 V$,		70		ns
E _{on}	Turn-On			Inductive Load, $T_C = 125^\circ$		1.1		mJ
E _{off}	Turn-Off	Switching Loss				0.78		mJ
E _{ts}	Total Sw	vitching Loss				1.88		mJ
Qg	Total Ga	te Charge				120		nC
Q _{ge}	Gate-En	nitter Charge		$V_{CE} = 400 \text{ V}, I_{C} = 40 \text{ A},$ $V_{GE} = 15 \text{ V}$		14		nC
Q _{gc}	Gate-Co	llector Charge		GE - IO V		58		nC

Т
G
Т
ø
9
6
ö
<u> </u>
Ο
6
00
2
<
Т
ield
d
Stop
9
2
G
Ď
Ä

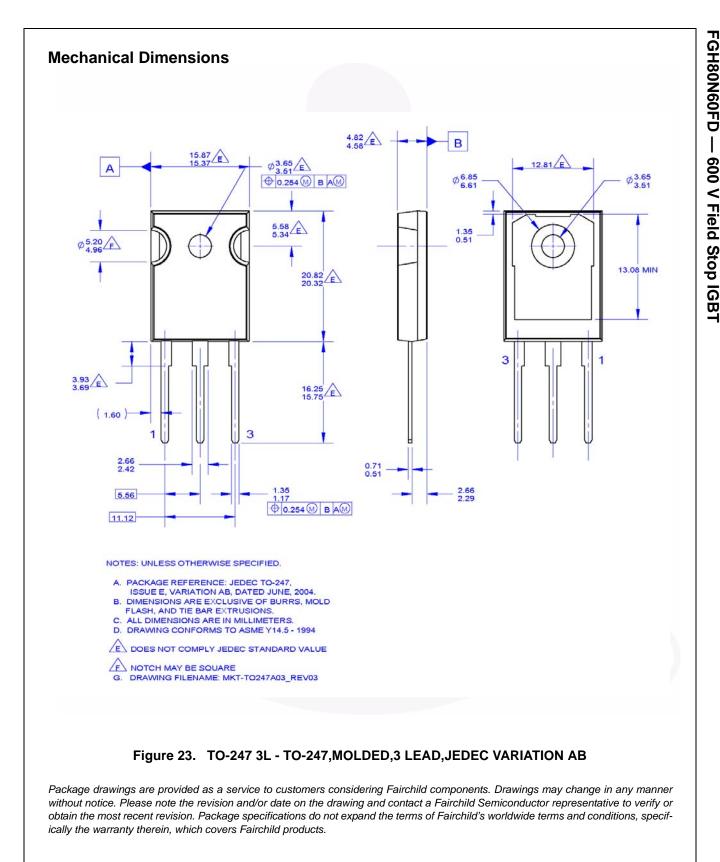

Symbol	Parameter	Test Condition	ons	Min.	Тур.	Max	Unit
V _{FM} Diode Forward Voltage	Diode Forward Voltage	I _F = 20 A	T _C = 25°C	-	2.3	2.8	V
	1F - 20 A	T _C = 125°C	-	1.7	-]	
t _{rr}	Diode Reverse Recovery Time	I _F =20 A, di _F / dt = 200 A/μs	T _C = 25°C	-	36	-	ns A
-11			T _C = 125°C	-	105	-	
l	Diode Reverse Recovery Current		T _C = 25°C	-	2.6	-	
rr			T _C = 125°C	-	7.8	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	46.8	-	nC
			T _C = 125°C	-	409	-	

FGH80N60FD — 600 V Field Stop IGBT




©2007 Fairchild Semiconductor Corporation FGH80N60FD Rev. C2

FGH80N60FD — 600 V Field Stop IGBT



©2007 Fairchild Semiconductor Corporation FGH80N60FD Rev. C2

FGH80N60FD Rev. C2

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO247-003

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAF BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild Semiconductor®

FACT Quiet Series™

Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET[™] MicroPak™ MicroPak2™ MillerDrive™ MotionMax[™] mWSaver[®] OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

F-PFS™

FRFET®

GreenBridge™

Global Power ResourceSM

® PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFĔT**® QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ **SYSTEM**®' TinyBoost TinyBuck[®] TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ \mathcal{M}_{Ser} UHC®

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

R

Fairchild®

FACT®

FAST®

FPS™

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGH80N60FDTU