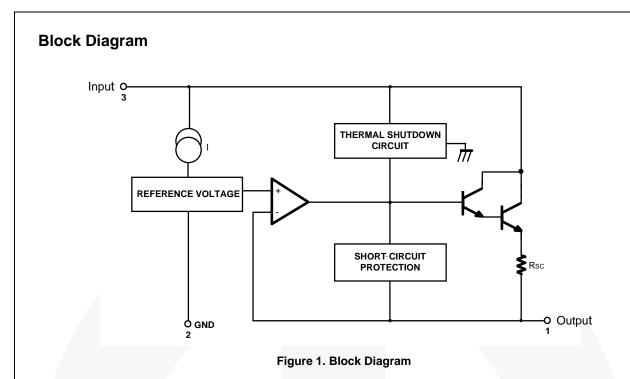

MC78LXXA / LM78LXXA 3-Terminal 0.1 A Positive Voltage Regulator

Features

- Maximum Output Current of 100 mA
- Output Voltage of 5 V, 6 V, 8 V, 12 V, and 15 V
- Thermal Overload Protection
- Short-Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance


Description

The MC78LXXA / LM78LXXA series of fixed-voltage monolithic integrated circuit voltage regulators are suitable for applications that required supply current up to 100 mA.

Product Number	Package	Packing Method	Output Voltage Tolerance	Operating Temperature
LM78L05ACZ		Bulk		
LM78L05ACZX		Tape & Reel		
LM78L05ACZXA		Ammo		
LM78L12ACZ		Bulk		
LM78L12ACZX		Tape & Reel		
MC78L05ACP	TO-92	Bulk		
MC78L05ACPXA		Ammo		
MC78L06ACP		Bulk	±5%	-40 to +125°C
MC78L08ACP		Bulk		
MC78L15ACP		Bulk		
MC78L15ACPXA		Ammo		
MC78L05ACD	0.000	Rail		
MC78L05ACDX	8-SOIC	Tape & Reel		
MC78L05ACHX	SOT-89	Tape & Reel	1	
MC78L08ACHX	301-09	Tape & Reel	1	

Ordering Information

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Paramete	r	Value	Unit	
V		$V_0 = 5 V \text{ to } 8 V$	30	V	
VI	Input Voltage	V _O = 12 V to 15 V	35	V	
T _{OPR}	Operating Temperature Range	-40 to +125°C	°C		
T _{J(MAX)}	Maximum Junction Temperature	150	°C		
T _{STG}	Storage Temperature Range		-65 to +150	°C	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-Case	TO-92	50	°C/W	
		TO-92	150	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-Air	SOT-89	225	°C/W	
		8-SOIC	160	°C/W	

Electrical Characteristics (MC78L05A / LM78L05A)

 $V_I = 10 \text{ V}, \text{ } I_O = 40 \text{ mA}, \text{ } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}, \text{ } C_I = 0.33 \text{ } \mu\text{F}, \text{ } C_O = 0.1 \text{ } \mu\text{F}, \text{ } \text{unless otherwise specified}.$

Symbol	Parameter		Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage		$T_J = 25^{\circ}C$		4.8	5.0	5.2	V
A\/	V _O Line Regulation ⁽¹⁾		T _{.1} = 25°C	$7 \text{ V} \leq \text{V}_{I} \leq 20 \text{ V}$		8	150	mV
Δvo			1 _J = 25 C	$8~V \le V_I \le 20~V$		6	100	mV
ΔV _O	Load Regulation ⁽¹⁾		T _{.1} = 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		11	60	mV
7v0			$1_{\rm J} = 25.0$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		5.0	30.0	mV
V	Output Voltage		$7 \text{ V} \leq \text{V}_{I} \leq 20 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$			5.25	V
Vo			$7 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{MAX}}^{(2)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	4.75		5.25	V
Ι _Q	Quiescent Current		$T_J = 25^{\circ}C$			2.0	5.5	mA
ΔI_Q	Quiescent Current	With Line	$8 \text{ V} \leq \text{V}_{I} \leq 20 \text{ V}$				1.5	mA
ΔI_Q	Change	With Load	1 mA \leq I _O \leq 40 mA	N			0.1	mA
V _N	Output Noise Voltage		T _A = 25°C, 10 Hz	≤ f ≤ 100 kHz		40		μV/Vo
$\Delta V_O / \Delta T$	Temperature Coefficient of VO		l _O = 5 mA			-0.65		mV/°C
RR	Ripple Rejection		f = 120 Hz, 8 V ≤ V	$V_{\rm I} \le 18 {\rm V}, {\rm T}_{\rm J} = 25^{\circ}{\rm C}$	41	80		dB
V _D	Dropout Voltage		T _J = 25°C			1.7		V

Notes:

1. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

2. Power dissipation $P_D \leq 0.75$ W.

Electrical Characteristics (MC78L06A)

 $V_I = 12 \text{ V}, I_O = 40 \text{ mA}, -40^{\circ}C \leq T_J \leq 125^{\circ}C, C_I = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, \text{ unless otherwise specified}.$

Symbol	Paramete	er		Conditions		Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		5.75	6.0	6.25	V
A \ /	Line Regulation ⁽³⁾		т огоо	$8.5 \text{ V} \le \text{V}_{I} \le 20 \text{ V}$		64	175	mV
ΔV_O			T _J = 25°C	$9 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}$		54	125	mV
A) /	Lood Degulation ⁽³⁾		T 05%C	1 mA ≤ I _O ≤ 100 mA		12.8	80.0	mV
ΔV_O	Load Regulation ⁽³⁾		$T_J = 25^{\circ}C$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$		5.8	40.0	mV
M	Output Voltage		$8.5 \text{ V} \leq \text{V}_{\text{I}} \leq$	≤ 20 V, 1 mA ≤ I _O ≤ 40 mA	5.7		6.3	V
Vo			$8.5 \text{ V} \leq \text{V}_{\text{I}} \leq$	$\leq V_{MAX}^{(4)}$, 1 mA $\leq I_{O} \leq$ 70 mA	5.7		6.3	V
			T _J = 25°C				5.5	mA
Ι _Q	Quiescent Current		T _J = 125°C	;		3.9	6.0	mA
ΔI_Q	Quiescent Current	With Line	$9 V \le V_{I} \le 2$	20 V			1.5	mA
ΔI_Q	Change	With Load	1 mA ≤ I _O ≤	≤ 40 mA			0.1	mA
V _N	Output Noise Voltage		T _A = 25°C,	10 Hz \leq f \leq 100 kHz		40		μV/Vo
$\Delta V_O / \Delta T$	Temperature Coefficient of VO		l _O = 5 mA			0.75		mV/°C
RR	Ripple Rejection		f = 120 Hz,	$10 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}, \text{ T}_{\text{J}} = 25^{\circ}\text{C}$	40	46		dB
VD	Dropout Voltage		T _J = 25°C			1.7		V

Notes:

3. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 4. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L08A)

 $V_I = 14 \text{ V}, I_O = 40 \text{ mA}, -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}, \text{ } C_I = 0.33 \text{ } \mu\text{F}, \text{ } C_O = 0.1 \text{ } \mu\text{F}, \text{ } \text{unless otherwise specified}.$

Symbol	Parameter		Conditions			Тур.	Max.	Unit
V _O	Output Voltage		T _J = 25°C		7.7	8.0	8.3	V
A) /	Line Regulation ⁽⁵⁾		T 25%C	$10.5~V \leq V_{I} \leq 23~V$		10	175	mV
ΔV_{O}	Line Regulation.		T _J = 25°C	$11~V \le V_I \le 23~V$		8	125	mV
41/	O Load Regulation ⁽⁵⁾		T - 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		15	80	mV
ΔV_O			T _J = 25°C	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		8	40	mV
	Output Voltage		$10.5V \le V_1 \le 23V$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$	7.6		8.4	V
Vo			$10.5V \le V_I \le V_{MAX}^{(6)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	7.6		8.4	V
Ι _Q	Quiescent Current		T _J = 25°C			2.0	5.5	mA
ΔI_Q	Quiescent Current	With Line	$11 \text{ V} \leq \text{V}_{\text{I}} \leq 23 \text{ V}$				1.5	mA
ΔI_Q	Change	With Load	$1 \text{ mA} \le I_O \le 40 \text{ mA}$				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f	≤100 kHz		60		μV/Vo
$\Delta V_O / \Delta T$	Temperature Coefficient of V _O		l _O = 5 mA			-0.8		mV/°C
RR	Ripple Rejection		f = 120 Hz, 11 V \leq V _I	\leq 21 V, T _J = 25°C	39	70		dB
V _D	Dropout Voltage		Т _Ј = 25°С			1.7		V

Notes:

5. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

6. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L12A / LM78L12A)

 $V_I = 19 \text{ V}, \text{ } I_O = 40 \text{ mA}, \text{ } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}, \text{ } C_I = 0.33 \text{ } \mu\text{F}, \text{ } C_O = 0.1 \text{ } \mu\text{F}, \text{ } \text{unless otherwise specified}.$

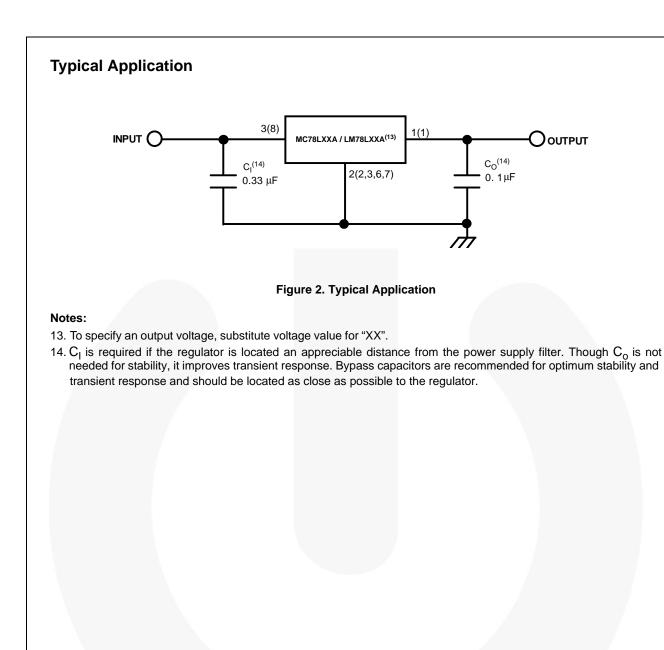
Symbol	Parameter		Conditions			Тур.	Max.	Unit
Vo	Output Voltage		T _J = 25°C		11.5	12.0	12.5	V
A) /	Line Regulation ⁽⁷⁾		T 25%C	$14.5~V \leq V_{I} \leq 27~V$		20	250	mV
ΔV_O			T _J = 25°C	$16 \text{ V} \le \text{V}_{I} \le 27 \text{ V}$		15	200	mV
A) /	Load Regulation ⁽⁷⁾		T - 25°C	$1 \text{ mA} \le I_O \le 100 \text{ mA}$		20	100	mV
ΔV_O			T _J = 25°C	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		10	50	mV
V	Output Voltage		$14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$	11.4		12.6	V
Vo			$14.5 V \le V_I \le V_{MAX}^{(8)}$	$1 \text{ mA} \le I_O \le 70 \text{ mA}$	11.4		12.6	V
Ι _Q	Quiescent Curren	t	$T_J = 25^{\circ}C$			2.1	6.0	mA
ΔI_Q	Quiescent	With Line	$16 \text{ V} \leq \text{V}_{\text{I}} \leq 27 \text{ V}$				1.5	mA
ΔI_Q	Current Change	With Load	$1 \text{ mA} \le I_O \le 40 \text{ mA}$				0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz $\leq f$:	≤ 100 kHz		80		μV/Vo
$\Delta V_O / \Delta T$	Temperature Coefficient of V _O		l _O = 5 mA			-1.0		mV/°C
RR	Ripple Rejection	Ripple Rejection		≤ 25 V, T _J = 25°C	37	65		dB
VD	Dropout Voltage		T _J = 25°C			1.7		V

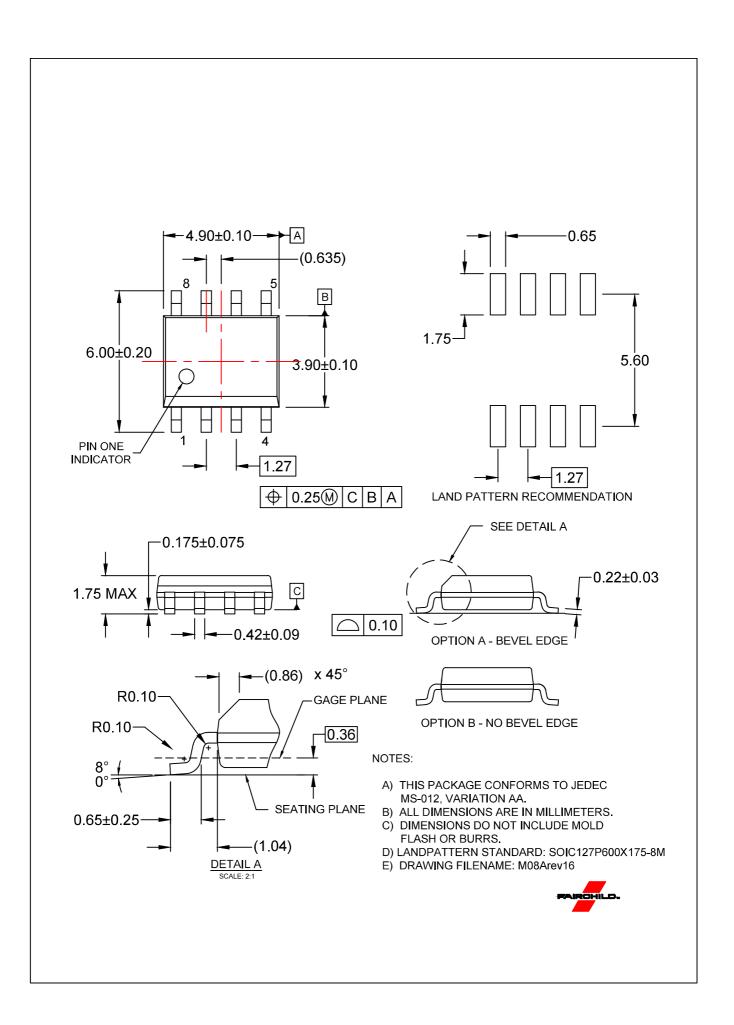
Notes:

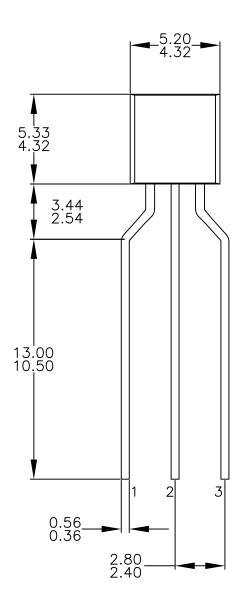
The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

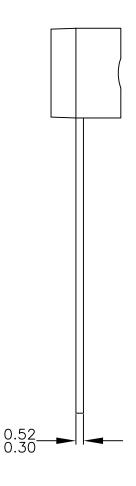
8. Power dissipation $P_D \le 0.75$ W.

Electrical Characteristics (MC78L15A)

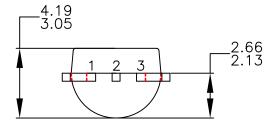

 $V_I = 23 \text{ V}, \text{ I}_O = 40 \text{ mA}, \text{ -}40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}, \text{ C}_I = 0.33 \text{ }\mu\text{F}, \text{ C}_O = 0.1 \text{ }\mu\text{F}, \text{ unless otherwise specified}.$

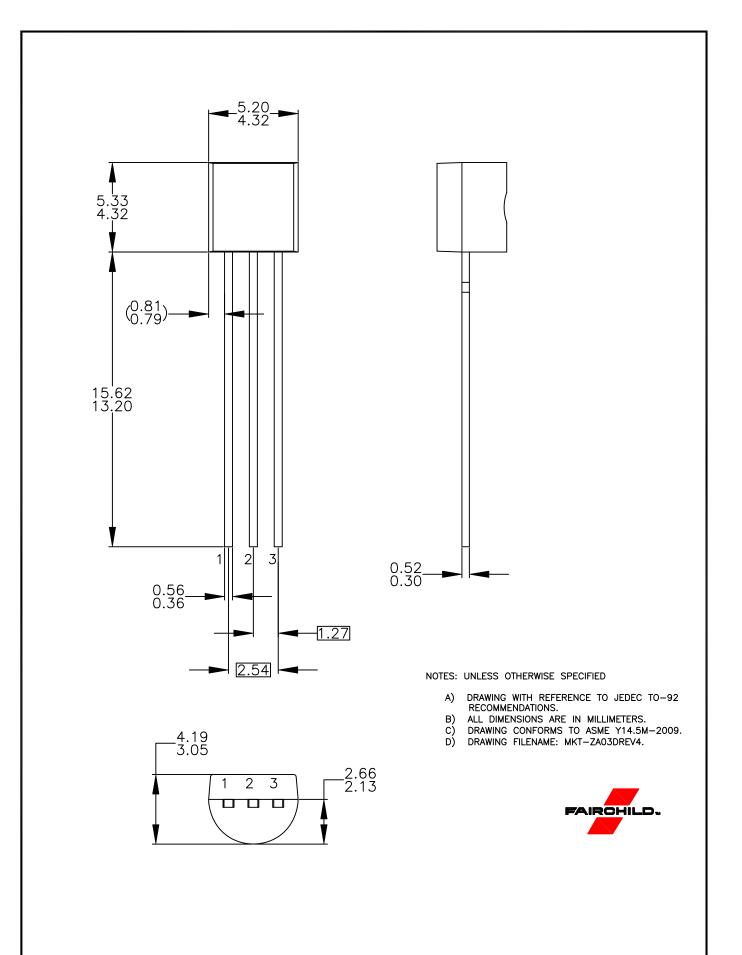

Symbol	Parame	ter	Condit	Conditions			Тур.	Max.	Unit
Vo	Output Voltage	Output Voltage		T _J = 25°C			15.0	15.6	V
41/	Line Regulation ⁽⁹⁾		T _{.1} = 25°C	17.5 V ≤ V _I ≤	30 V		25	300	mV
ΔV_{O}			$1_{\rm J} = 25 {\rm C}$	$20 \text{ V} \le \text{V}_1 \le 3$	0 V		20	250	mV
ΔV _O	Load Regulation ⁽⁹⁾		T _{.1} = 25°C	$1 \text{ mA} \le I_0 \le 1$	00 mA		25	150	mV
ΔvO			1 _J = 25 C	$1 \text{ mA} \le I_0 \le 4$	40 mA		12	75	mV
V	Output Voltage		$17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$	$1 \text{ mA} \le I_O \le 40 \text{ mA}$		14.25		15.75	V
Vo			$17.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(10)}$	$1 \text{ mA} \le I_0 \le 7$	70 mA	14.25		15.75	V
Ι _Q	Quiescent Curren	t	$T_J = 25^{\circ}C$				2.1	6.0	mA
ΔI_Q	Quiescent	With Line	$20 \text{ V} \leq \text{V}_{\text{I}} \leq 30 \text{ V}$					1.5	mA
ΔI_Q	Current Change	With Load	$1 \text{ mA} \le I_O \le 40 \text{ mA}$					0.1	mA
V _N	Output Noise Voltage		$T_A = 25^{\circ}C$, 10 Hz \leq f \leq	100 kHz			90		μV/Vo
$\Delta V_O / \Delta T$	Temperature Coefficient of VO		I _O = 5 mA				-1.3		mV/°C
RR	Ripple Rejection		f = 120 Hz, 18.5 V \leq V _I	\leq 28.5 V, T _J =	25°C	34	60		dB
V _D	Dropout Voltage		T _J = 25°C				1.7		V

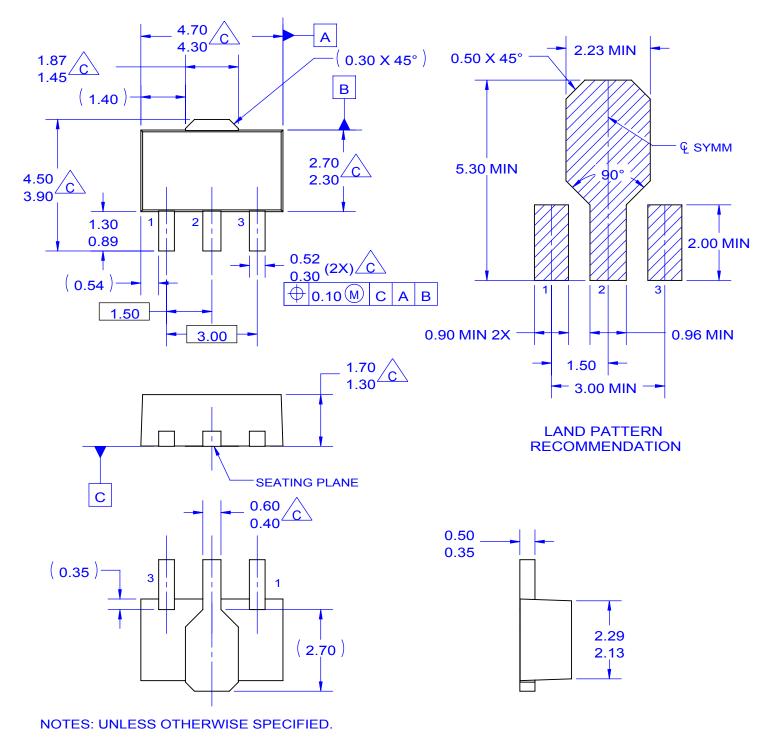

Notes:


9. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests.

10. Power dissipation $P_D \le 0.75$ W.

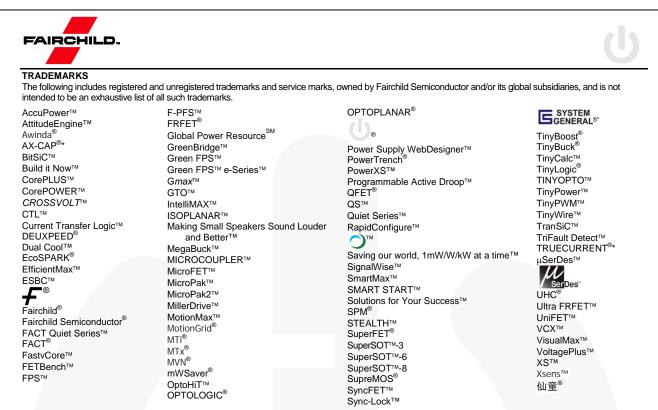





NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. Α.

- В. С. D. Е.



A. REFERENCE TO JEDEC TO-243 VARIATION AA.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

 C DOES NOT COMPLY JEDEC STANDARD VALUE.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION.
E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

F. DRAWING FILE NAME: MA03CREV3

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

MC78L05ACPXA MC78L05ACD MC78L05ACP MC78L05ACPX MC78L05ACDX MC78L05ACHX MC78L05ACP MC78L05ACD_Q