

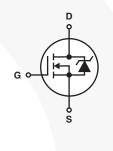
Data Sheet

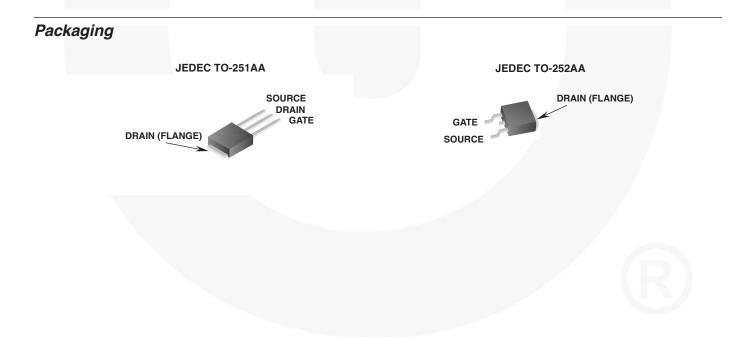
September 2013

N-Channel Logic Level Power MOSFET 60V, 11A, 107 mΩ

These N-Channel enhancement-mode power MOSFETs are manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA49158.


Ordering Information


PART NUMBER	PACKAGE	BRAND
RFD3055LE	TO-251AA	F3055L
RFD3055LESM9A	TO-252AA	F3055L

Features

- 11A, 60V
- r_{DS(ON)} = 0.107Ω
- Temperature Compensating PSPICE[®] Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFD3055LE, RFD3055LESM9A	UNITS
Drain to Source Voltage (Note 1)VDSS	60	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	60	v
Gate to Source Voltage	±16	V
Continuous Drain Current	11	А
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	
Single Pulse Avalanche RatingE _{AS}	Refer to UIS Curve	
Power DissipationPD	38	W
Derate Above 25 ^o C	0.25	W/ ^o C
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

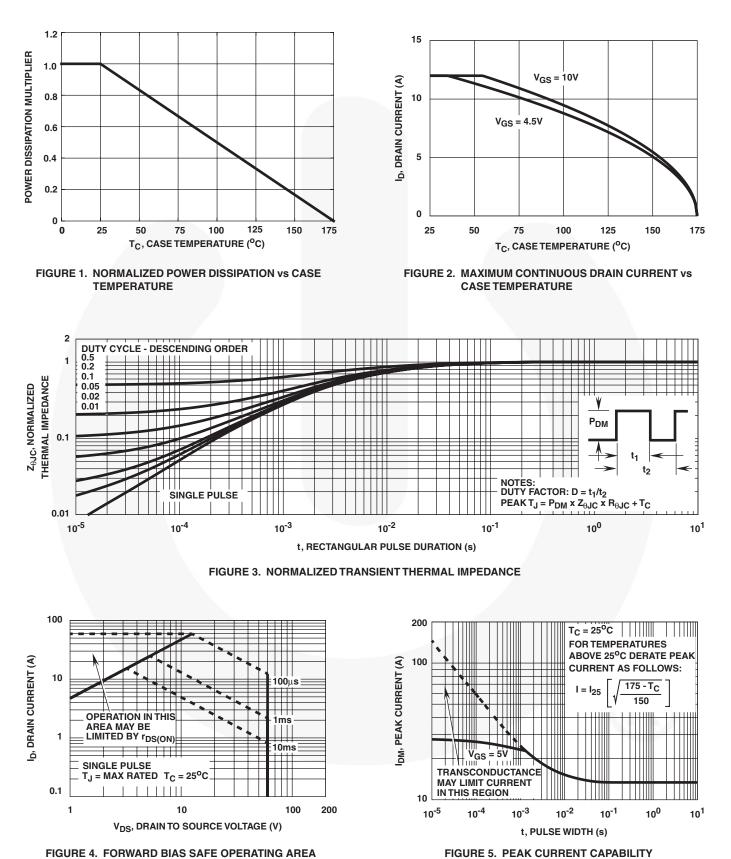
NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

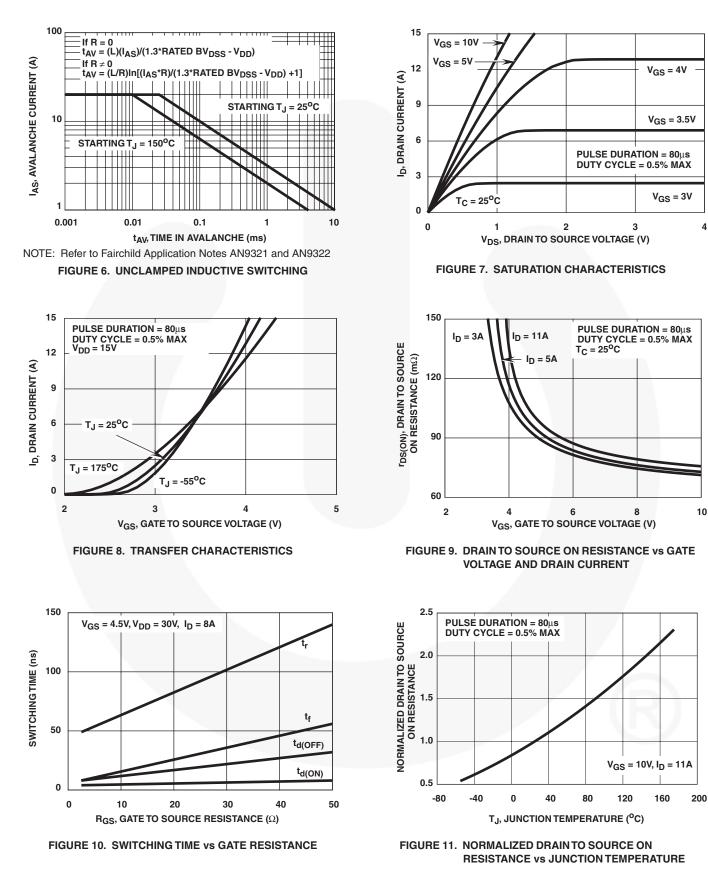
Electrical Specifications T_C = 25°C, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_{D} = 250 \mu A, V_{GS} = 0 V$		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1	-	3	V
Zero Gate Voltage Drain Current	I _{DSS}	$I_{DSS} = 55V, V_{GS} = 0V$ $V_{DS} = 50V, V_{GS} = 0V, T_{C} = 150^{\circ}C$		-	-	1	μA
				-	-	250	μA
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 16V$		-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 8A, V _{GS} = 5V (Fig	gure 11)	-	-	0.107	Ω
Turn-On Time	ton	$V_{DD} \approx 30V, I_D = 8A,$ $V_{GS} = 4.5V, R_{GS} = 32\Omega$ (Figures 10, 18, 19)		-	-	170	ns
Turn-On Delay Time	t _{d(ON)}			-	8	-	ns
Rise Time	t _r			-	105	-	ns
Turn-Off Delay Time	td(OFF)			-	22	-	ns
Fall Time	t _f			-	39	-	ns
Turn-Off Time	tOFF			-	-	92	ns
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 0V$ to 10V	$V_{DD} = 30V, I_D = 8A,$	-	9.4	11.3	nC
Gate Charge at 5V	Q _{g(5)}	$V_{GS} = 0V$ to 5V	│ I _{g(REF)} = 1.0mA │ (Figures 20, 21)	-	5.2	6.2	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V \text{ to } 1V$		-	0.36	0.43	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz	-	350	-	pF	
Output Capacitance	C _{OSS}	(Figure 14)		-	105	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	23	-	pF
Thermal Resistance Junction to Case	R _{θJC}			-	-	3.94	°C/W
Thermal Resistance Junction to Ambient	R _{0JA}	TO-220AB		-	-	62	°C/W
		TO-251AA, TO-252AA	١	-	-	100	°C/W

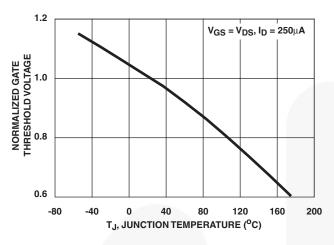
Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 8A		-	1.25	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 8A$, $dI_{SD}/dt = 100A/\mu s$		-	66	ns

NOTES:


2. Pulse Test: Pulse Width \leq 300ms, Duty Cycle \leq 2%.

3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).


Typical Performance Curves Unless Otherwise Specified

Typical Performance Curves Unless Otherwise Specified (Continued)

Typical Performance Curves Unless Otherwise Specified (Continued)

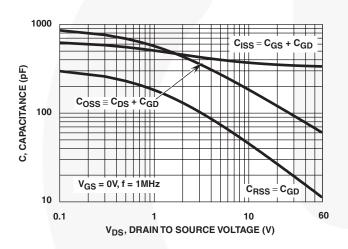


FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

Test Circuits and Waveforms

VARY tP TO OBTAIN

REQUIRED PEAK IAS

VGS

tь

٥v

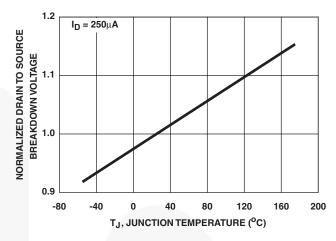


FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

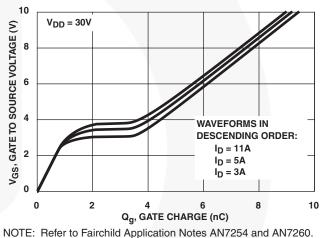
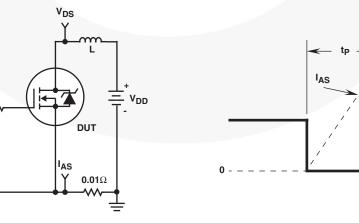



FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

BV_{DSS}

FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT

R_G

0-----

FIGURE 17. UNCLAMPED ENERGY WAVEFORMS

V_{DS}

V_{DD}

Test Circuits and Waveforms (Continued)

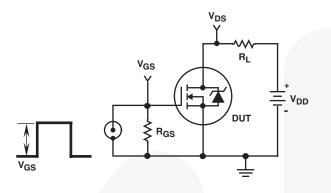


FIGURE 18. SWITCHING TEST CIRCUIT

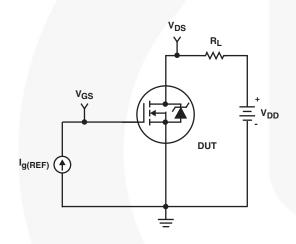


FIGURE 20. GATE CHARGE TEST CIRCUIT

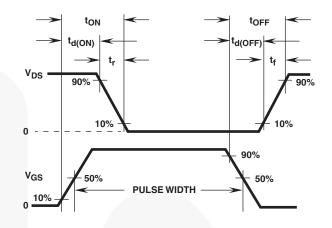
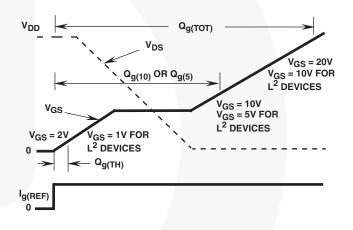



FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

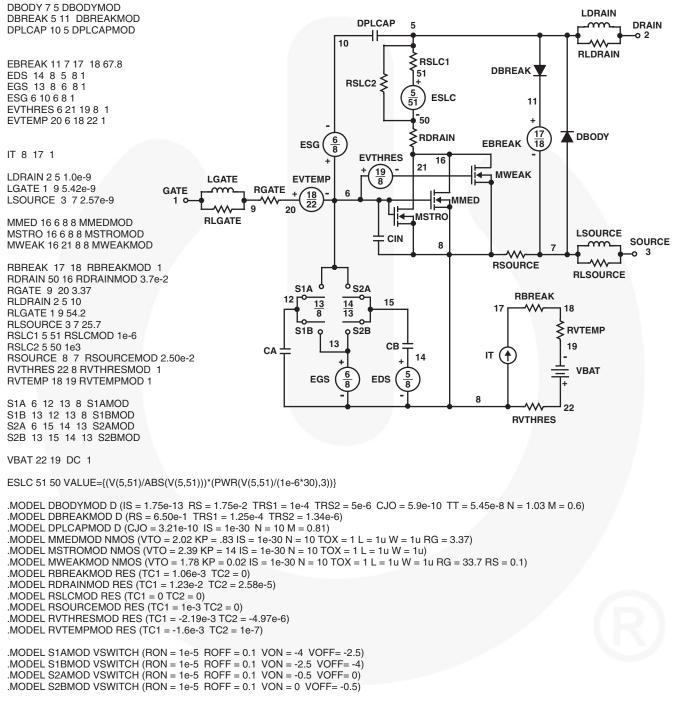


FIGURE 21. GATE CHARGE WAVEFORMS

PSPICE Electrical Model

.SUBCKT RFD3055LE 2 1 3 ; rev 1/30/95

CA 12 8 3.9e-9 CB 15 14 4.9e-9 CIN 6 8 3.25e-10

.ENDS

For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] *	FRFET®	®	SYSTEM ®
BitSiC™	Global Power Resource SM	PowerTrench [®]	GENERAL
Build it Now™	GreenBridge™	PowerXS™	
CorePLUS™	Green FPS™	Programmable Active Droop™	TinyBoost [®] TinyBuck [®]
CorePOWER™	Green FPS™ e-Series™	QFET®	
CROSSVOLT™	Gmax™	QS™	TinyCalc™ Tinut a sia®
CTL™	GTO™	Quiet Series™	
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TINYOPTO™ TimeDourson™
DEUXPEED®	ISOPLANAR™	[™]	TinyPower™ TinvPWM™
Dual Cool™	Marking Small Speakers Sound Louder		TinyWire™
EcoSPARK [®]	and Better™	Saving our world, 1mW/W/kW at a time™	TranSiC™
EfficentMax™	MegaBuck™	SignalWise™	TriFault Detec
ESBC™	MICROCOUPLER™	SmartMax™	TRUECURRE
R	MicroFET™	SMART START™	µSerDes™
+ °	MicroPak™	Solutions for Your Success™	
Fairchild [®]	MicroPak2™	SPM®	\mathcal{M}
Fairchild Semiconductor [®]	MillerDrive™	STEALTH™	<mark>∕ Ser</mark> Des [™]
FACT Quiet Series™	MotionMax™	SuperFET®	UHC®
FACT®	mWSaver®	SuperSOT™-3	Ultra FRFET™
FAST®	OptoHiT™	SuperSOT™-6	UniFET™
FastvCore™	OPTOLOGIC®	SuperSOT [™] -8	VCX™
FETBench™	OPTOPLANAR®	SupreMOS®	VisualMax™
FPS™		SyncFET™	VoltagePlus™

TEM ®* ERAL ⊳st® k® с™ lic® то™ ver™ M™ e™ тм Detect™ URRENT®* S TM

lax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: