Dual Series Switching Diodes

The BAV99WT1G is a smaller package, equivalent to the BAV99LT1G.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

Suggested Applications

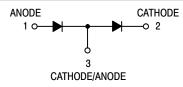
- ESD Protection
- Polarity Reversal Protection
- Data Line Protection
- Inductive Load Protection
- Steering Logic

MAXIMUM RATINGS (Each Diode)

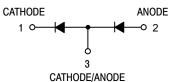
Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	Vdc
Forward Current	IF	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V_{RRM}	100	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current t = 1.0 μs t = 1.0 ms t = 1.0 s	I _{FSM}	2.0 1.0 0.5	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

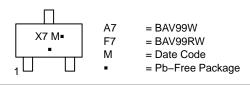
1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.



ON Semiconductor®


www.onsemi.com

SC-70 CASE 419



BAV99WT1 SC-70, CASE 419, STYLE 9

BAV99RWT1 SC-70, CASE 419, STYLE 10

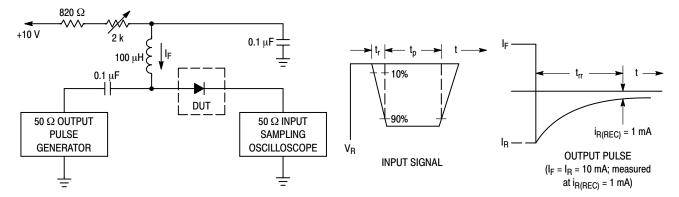
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
BAV99WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SBAV99WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
BAV99RWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SBAV99RWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
NSVBAV99WT3G	SC-70 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

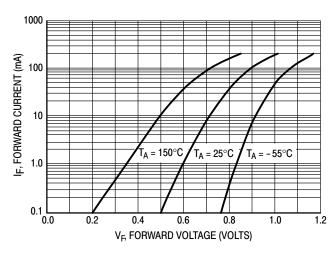

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	625	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS						
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	100	_	Vdc		
Reverse Voltage Leakage Current $(V_R = 100 \text{ Vdc})$ $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _R	- - -	1.0 30 50	μAdc		
Diode Capacitance (V _R = 0, f = 1.0 MHz)	C _D	-	1.5	pF		
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	V _F	- - - -	715 855 1000 1250	mVdc		
Reverse Recovery Time (I _F = I _R = 10 mAdc, i _{R(REC)} = 1.0 mAdc) (Figure 1) R _L = 100 Ω	t _{rr}	-	6.0	ns		
Forward Recovery Voltage (I _F = 10 mA, t _f = 20 ns)	V _{FR}	-	1.75	V		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.



Notes: (a) A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA.

- (b) Input pulse is adjusted so I_{R(peak)} is equal to 10 mA.
- (c) t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

CURVES APPLICABLE TO EACH DIODE

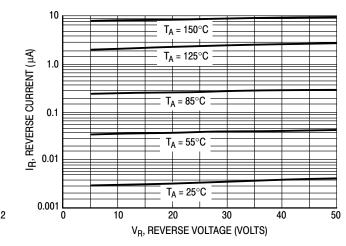


Figure 2. Forward Voltage

Figure 3. Leakage Current

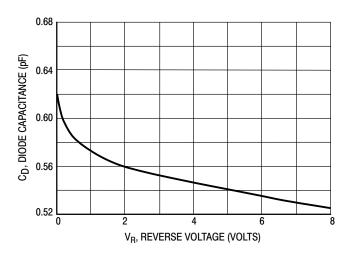
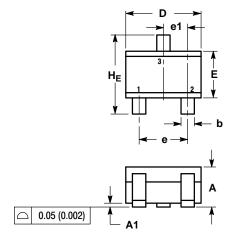
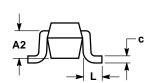




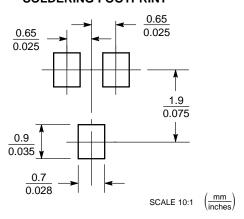
Figure 4. Capacitance

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE N**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095


PIN 1. ANODE

2. CATHODE 3. CATHODE-ANODE

STYLE 10: PIN 1. CATHODE

2. ANODE 3. ANODE-CATHODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email: orderlit@onsemi.com

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

BAV99RWT1G BAV99WT1G SBAV99RWT1G SBAV99WT1G