

LM2931

Datasheet - production data

Very low drop voltage regulators with inhibit function

ОРАК ТО-92 SO-8 СО-92

Features

- Very low dropout voltage (90 mV typ. at 10 mA load)
- Low quiescent current (typ. 2.5 mA, at 100 mA load)
- Output current up to 100 mA
- Adjustable (from V_{OUT} = 2.5 V only SO-8) and fixed (3.3 V and 5 V) output voltage version
- Internal current and thermal limit
- Load dump protection up to 60 V
- Reverse transient protection up to 50 V
- Temperature range: 40 to 125 °C
- Package available: TO-92, DPAK, SO-8 (with inhibit control)

Description

The LM2931 are very low drop regulators. The very low drop voltage and the low quiescent current make them particular suitable for low noise, low power applications and in batterypowered systems. In the 8-pin configuration (SO-8), fully compatible with the older L78L family, a shutdown logic control function is available. This means that when the device is used as a local regulator it is possible to put a part of the board in standby, decreasing total power consumption. Ideal for automotive applications, LM2931 is protected from reverse battery installations or 2 battery jumps. During the transient, such as a 60 V load dump, when the input voltage can exceed the specified maximum operating input voltage of 26 V, the regulator automatically shuts down to protect both internal circuitry and the load.

Table	1.	Device	summary
IUNIO	•••	001100	o annar y

	Output voltages		
DPAK	TO-92 (bag)	Output voltages	
		LM2931AD33R	3.3 V
LM2931ADT50R	LM2931AZ50R	LM2931AD50R	5.0 V
		LM2931D-R	2.5 to 26 V

DocID6740 Rev 21

This is information on a product in full production.

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Application circuits
5	Electrical characteristics7
6	Typical characteristics
7	Package mechanical data 14
8	Packaging mechanical data 20
9	Revision history

1 Diagram

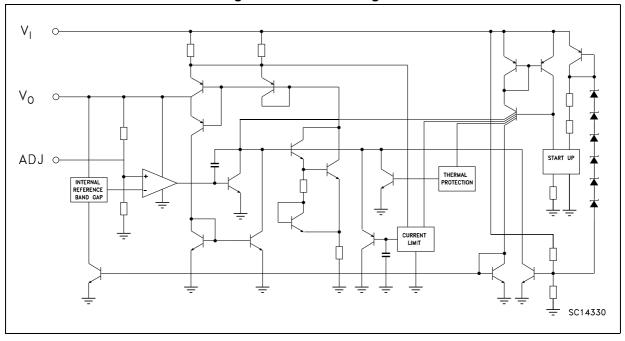


Figure 1. Schematic diagram

2 Pin configuration

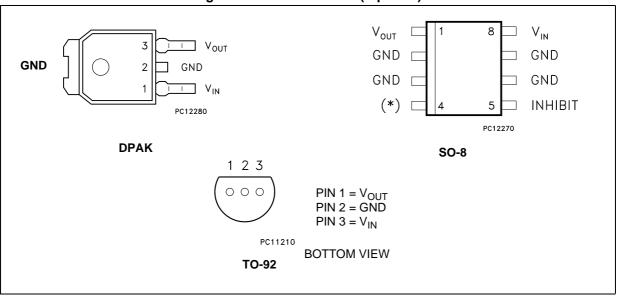


Figure 2. Pin connections (top view)

 $(\ensuremath{^*})$ ADJ pin on the Adjustable version, Not Connected in the fixed output version.

3 Maximum ratings

· · · · · · · · · · · · · · · · · · ·						
Parameter	Value	Unit				
DC positive input voltage	40	V				
DC reverse input voltage	-15	V				
Transient input voltage (τ < 100 ms)	60	V				
Transient reverse input voltage (τ < 100 ms)	-50	V				
Inhibit input voltage	40	V				
Output current	Internally limited					
Storage temperature range	-65 to 150	°C				
Operating junction temperature range	-40 to 125	°C				
	DC positive input voltageDC reverse input voltageTransient input voltage ($\tau < 100 \text{ ms}$)Transient reverse input voltage ($\tau < 100 \text{ ms}$)Inhibit input voltageOutput currentStorage temperature range	DC positive input voltage40DC reverse input voltage-15Transient input voltage ($\tau < 100 \text{ ms}$)60Transient reverse input voltage ($\tau < 100 \text{ ms}$)-50Inhibit input voltage40Output currentInternally limitedStorage temperature range-65 to 150				

Table 2. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	SO-8	DPAK	TO-92	Unit
R _{thJC}	Thermal resistance junction-case	20	8		°C/W
R _{thJA}	Thermal resistance junction-ambient	55 ⁽¹⁾	100	200	°C/W

1. Considering 6 cm2 of copper board heat-sink.

4 Application circuits

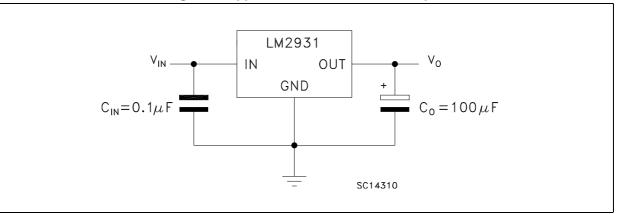
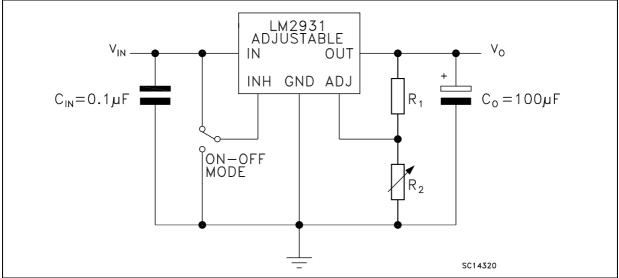



Figure 3. Application circuit for fixed output

Note: R_1 suggested value = 27 k Ω $V_0 = V_{REF} (R_1 + R_2)/R_1$ Inhibit pin: regulator is enabled when $V_{INH} < 1.2$ V, disabled when $V_{INH} > 3.25$ V

5 Electrical characteristics

Refer to the application circuit *Figure 3*, $T_J = 25$ °C, $C_I = 0.1 \mu$ F, $C_O = 100 \mu$ F, $V_I = 14$ V, $I_O = 10$ mA, $V_{INH} = 0$ V, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	$I_{O} = 10 \text{ mA}, \text{ T}_{J} = -40 \text{ to } 125^{\circ}\text{C}$	26			V
Vo	Output voltage		3.135	3.3	3.425	V
V _O	Output voltage	$I_{O} = 100 \text{ mA}, V_{I} = 6 \text{ to } 26 \text{ V}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	3.135	3.3	3.465	V
	Line regulation	V _I = 9 to 16 V		2	10	mV
ΔV_{O}		V ₁ = 6 to 26 V		4	33	IIIV
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		10	33	mV
V	\mathbf{D} report voltage (1) (2)	I _O = 10 mA		90	250	mV
V _d	Dropout voltage ^{(1) (2)}	I _O = 100 mA		250	600	
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 330 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	78		dB
V_{IL}	Control input voltage low	T _J = -40 to 125°C		2	1.2	V
V _{IH}	Control input voltage high	T _J = -40 to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μΑ
VI	Transient input voltage	R_{LOAD} = 330 Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	V_{O} = ± 0.3 V, R _{LOAD} = 330 Ω	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 330 Ω, τ < 100ms	-50			V
eN	Output noise voltage	B =10 Hz to 100 kHz		330		μV_{RMS}

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Refer to the application circuit *Figure 3*, $T_J = 25$ °C, $C_I = 0.1 \mu$ F, $C_O = 100 \mu$ F, $V_I = 14$ V, $I_O = 10 \text{ mA}$, $V_{INH} = 0$ V, unless otherwise specified.

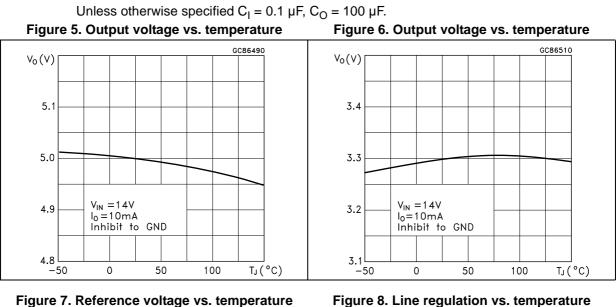
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	$I_{O} = 10 \text{ mA}, \text{ T}_{J} = -40 \text{ to } 125^{\circ}\text{C}$	26			V
Vo	Output voltage		4.81	5	5.19	V
V _O	Output voltage	$I_{O} = 100 \text{ mA}, V_{I} = 6 \text{ to } 26 \text{ V}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	4.75	5	5.25	V
A) /	Line regulation	V _I = 9 to 16 V		2	10	m)/
ΔV_{O}	Line regulation	V _I = 6 to 26 V		4	30	mV
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		15	50	mV
N/	Dropout voltage (1) (2)	I _O = 10 mA		90	200	m)/
V _d	Dropout voltage ⁽¹⁾ ⁽²⁾	I _O = 100 mA		250	600	mV
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
-	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 500 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	75		dB
V _{IL}	Control input voltage low	T _J = -40 to 125°C		2	1.2	V
V_{IH}	Control input voltage high	T _J = -40 to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	$R_{LOAD} = 500 $ Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3 \text{ V}, \text{ R}_{LOAD} = 500 \Omega$	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 500 Ω, τ < 100ms	-50			V
eN	Output noise voltage	B =10 Hz to 100 kHz		500		μV_{RMS}

Table 5. Electrical characteristics of LM2931A50

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Refer to the application circuit *Figure 4* with R₁ = 27 K Ω and R₂ = 40.5 k Ω , T_J = 25 °C, C_I = 0.1 μ F, C_O = 100 μ F, V_I = 14 V, I_O = 10 mA, V_{INH} = 0 V, unless otherwise specified.


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VI	Maximum operating input voltage	$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	26			V	
V_{REF}	Reference voltage (1)		1.14	1.2	1.26	V	
V_{REF}	Reference voltage (1)	$I_{O} = 100 \text{ mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	1.08	1.2	1.32	V	
ΔV_{O}	Line regulation	V _I = 3.6 to 26 V		0.6	4.5	mV	
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		9	30	mV	
V	Dropout voltage ⁽¹⁾ ⁽²⁾	I _O = 10 mA		90	200		
V _d		I _O = 100 mA		250	600	mV	
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA	
-	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 300 Ω		0.3	1	mA	
I _{SC}	Short circuit current		100	300		mA	
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	80		dB	
V _{IL}	Control input voltage low	$T_{\rm J} = -40$ to 125°C		2	1.2	V	
V _{IH}	Control input voltage high	$T_{\rm J} = -40$ to 125°C	3.25	2		V	
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA	
VI	Transient input voltage	$R_{LOAD} = 300 \ Ω, \tau < 100 ms$	60	70		V	
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3 \text{ V}, \text{ R}_{LOAD} = 300 \Omega$	-15	-50		V	
VI	Reverse polarity input voltage transient	$R_{LOAD} = 300 \ Ω, \ τ < 100 ms$	-50			V	
eN	Output noise voltage	B = 10 Hz to 100 kHz		330		μV_{RMS}	

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Typical characteristics 6

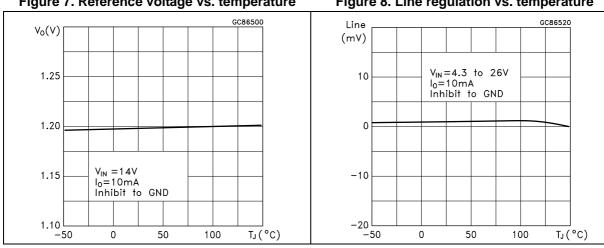


Figure 8. Line regulation vs. temperature

GC86560

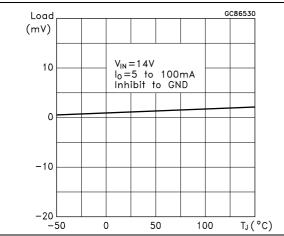
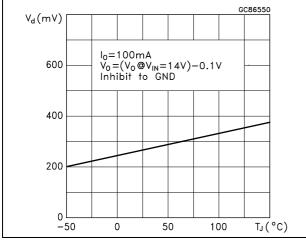
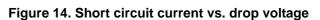
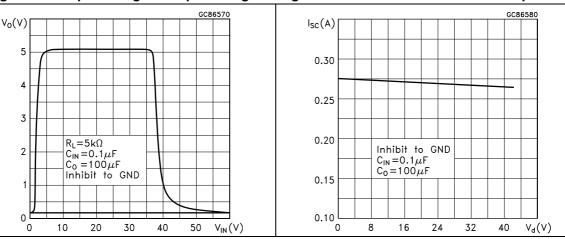




Figure 11. Dropout voltage vs. temperature

75

100


125

lo(mA)

 $V_0 = (V_0 @ V_{IN} = 14V) - 0.1V$ Inhibit to GND

T_J = 25°C

50

Vdrop

(V) 300

250

200

150

100

50

0

25

5

4

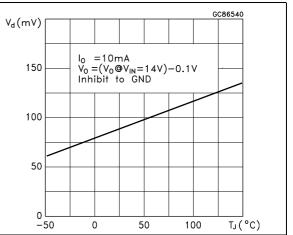


Figure 15. Quiescent current vs. temperature

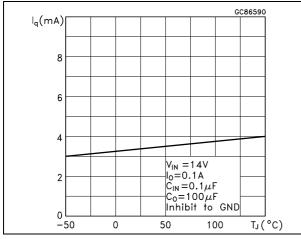


Figure 17. Quiescent current vs. output current

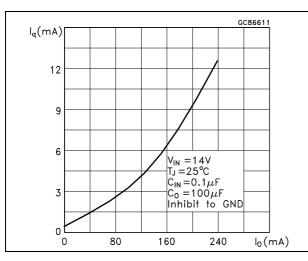
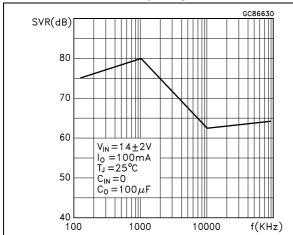



Figure 19. Supply voltage rejection vs. frequency

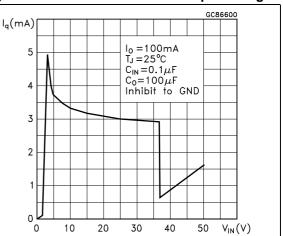


Figure 18. Supply voltage rejection vs. temperature

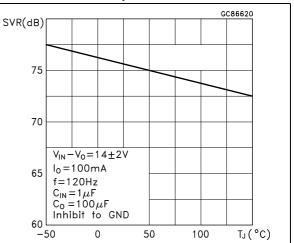



Figure 20. Supply voltage rejection vs. output current

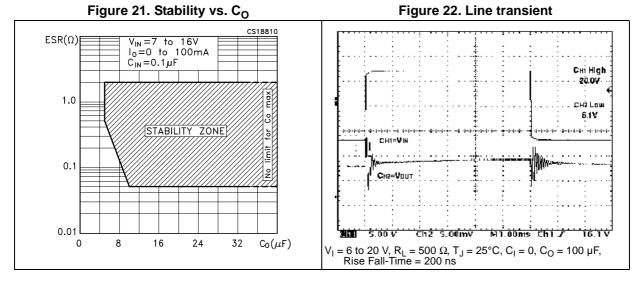
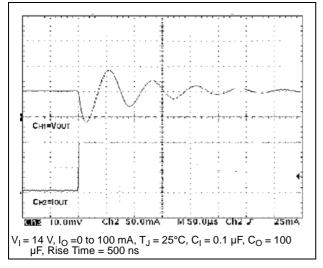
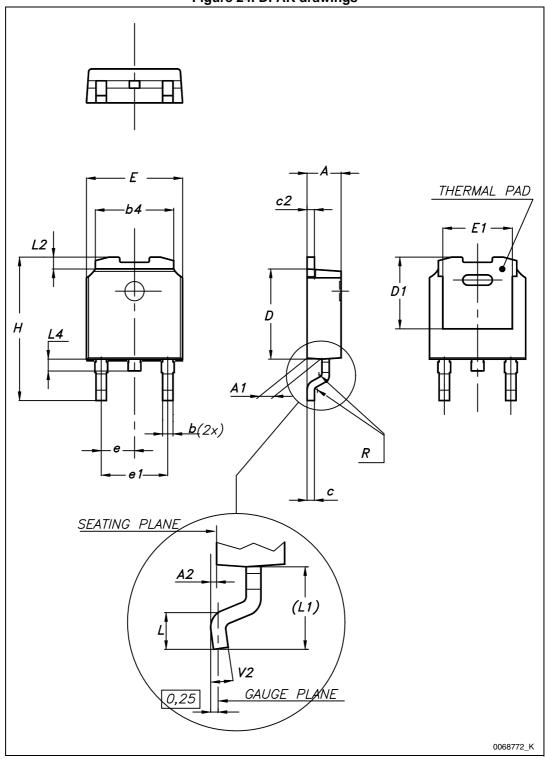



Figure 23. Load transient



7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 24. DPAK drawings

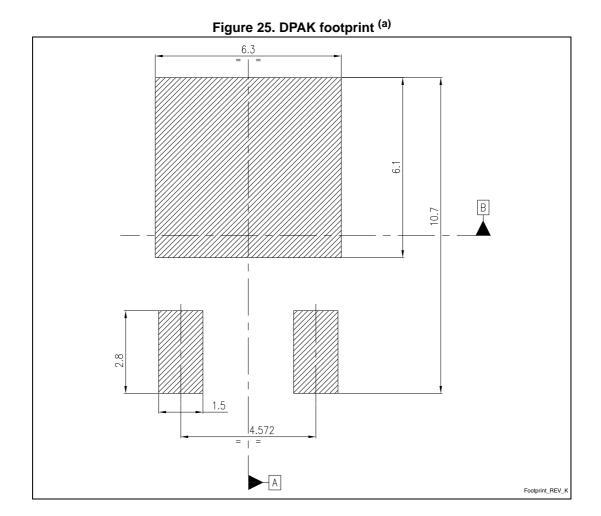
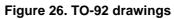
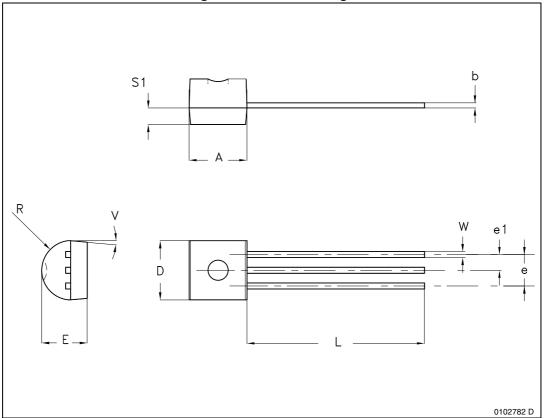


Table 7. DPAK mechanical data					
Dim.		mm			
	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		


Table 7. DPAK mechanical data



a. All dimensions are in millimeters.

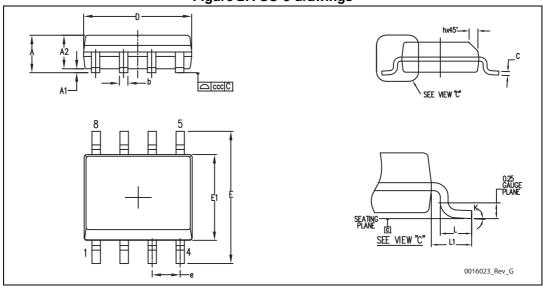


Table 8. TO-92 mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
A	4.32		4.95		
b	0.36		0.51		
D	4.45		4.95		
E	3.30		3.94		
е	2.41		2.67		
e1	1.14		1.40		
L	12.70		15.49		
R	2.16		2.41		
S1	0.92		1.52		
W	0.41		0.56		
V		5°			

Figure 27. SO-8 drawings

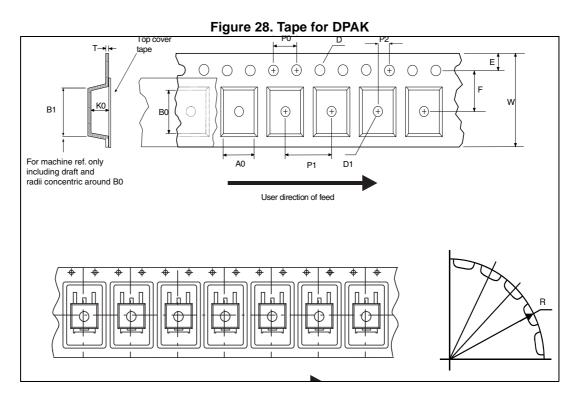
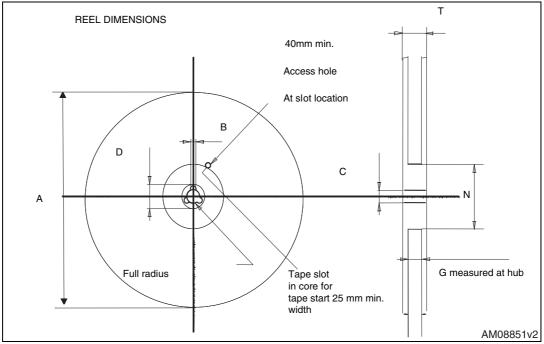
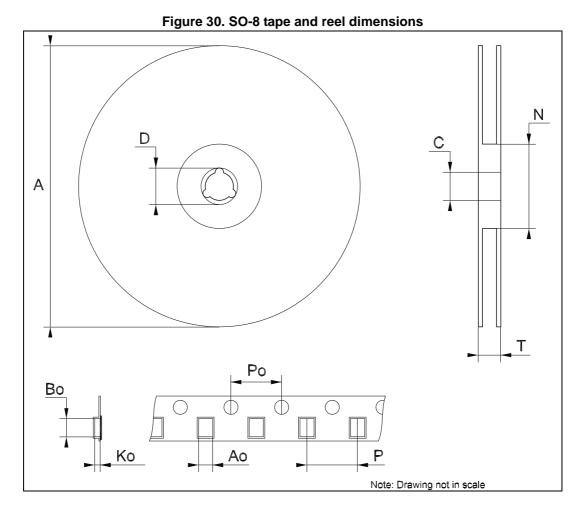


	Table 9.	SO-8	mechanical	data
--	----------	-------------	------------	------


Dim.	mm		
	Min.	Тур.	Max.
А			1.75
A1	0.10		0.25
A2	1.25		
b	0.28		0.48
С	0.17		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
k	0°		8°
CCC			0.10

8 Packaging mechanical data

Figure 29. Reel for DPAK



Таре				Reel		
mm		Dim	mm			
Dim. —	Min.	Max.	— Dim.	Min.	Max.	
A0	6.8	7	А		330	
B0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Table 10. DPAK tape and reel mechanical data

Table 11. SO-8 tape and reel	mechanical data
------------------------------	-----------------

Dim.	mm		
	Min.	Тур.	Max.
А			330
С	12.8		13.2
D	20.2		
Ν	60		
Т			22.4
Ao	8.1		8.5
Во	5.5		5.9
Ko	2.1		2.3
Po	3.9		4.1
Р	7.9		8.1

9 Revision history

Date	Revision	Changes	
21-Jun-2004	12	Document updated.	
16-Jun-2006	13	Order codes updated.	
27-Jul-2007	14	Added Table 1 in cover page.	
21-Aug-2007	15	Added root part number - (see Table 1).	
22-Nov-2007	16	Modified: Table 1.	
11-Feb-2008	17	Modified: Table 1 on page 1.	
10-Jul-2008	18	Removed package TO-220, modified Table 1 on page 1.	
26-May-2010	19	Modified: V _I values <i>Table 4 on page 7</i> , <i>Table 5 on page 8</i> and <i>Table 6 on page 9</i> .	
02-Nov-2011	20	Modified: Figure 4 on page 6. Added: (*) ADJ pin on the Adjustable version, Not Connected in the fixed output version. on page 4 and Inhibit pin: regulator is enabled when $V_{INH} < 1.2 \text{ V}$, disabled when $V_{INH} > 3.25 \text{ V}$ on page 6.	
09-Apr-2014	21	 Part numbers LM2931XX, LM2931AXX33 and LM2931AXX50 changed to LM2931. Updated the description in cover page Section 2: Pin configuration and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes. 	

Table 12. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

<u>LM2931AZ50R</u> <u>LM2931AD50R</u> <u>LM2931ADT50R</u> <u>LM2931D-R</u> <u>LM2931AD33R</u> <u>LM2931ADT50RY</u> LM2931ADT33RY